

24V Protected Switch Shield with BTT6030-2ERA and BTT6020-1ERA

About this document

Scope and purpose

This document describes how to use the 24V Protected Switch Shield with BTT6030-2ERA and BTT6020-1ERA.

Intended audience

Engineers, hobbyists and students who want to switch 24V loads in their Arduino projects.

Table of Contents

About t	his document	
Table of	f Contents	
1	24V Protected Switch Shield introduction	
1.1	24V Protected Switch Shield overview	2
1.2	Key features	3
1.3	Block diagram of an automotive light control	5
2	24V Protected Switch Shield board description	
2.1	Schematics	6
2.2	Layout	7
2.3	Pin assignment	9
2.4	Pin definitions and functions	
3	BTT6030-2ERA overview	
3.1	Key features of the BTT6030-2ERA PROFET [™] +24V	
3.2	Block diagram	
3.3	Pin assignment	
3.4	Pin definitions and functions BTT6030-2ERA	
4	BTT6020-1ERA overview	
4.1	Keyfeatures of the BTT6030-2ERA PROFET™ +24V	
4.2	Block diagram	
4.3	Pin assingsment	
4.4	Pin assingsment	16
5	Getting Started	
5.1	Target applications	
5.2	Typical target applications	
5.2.1	Getting started: Shield	
5.2.2	Getting started: Software	
5.2.3	Software hints	21
5.2.4	Hardware hints	22
Revisio	n History	

1 24V Protected Switch Shield introduction

1.1 24V Protected Switch Shield overview

The 24V Protected Switch Shield adds advanced driving and diagnostic of generic loads to the Arduino projects. The shield can be controlled with the general logic IO-Ports of a microcontroller. Either an Arduino Uno R3, the XMC1100 Boot Kit or the more powerful XMC4700 Relax Kit and XMC4800 Relax Kit from Infineon can be used as the master.

On board of the 24V Protected Switch Shield are two BTT6030-2ERA and one BTT6020-1ERA PROFETTM+ 24V. Each of the BTT6030-2ERA features two 32 m Ω Smart high-side power switch-channels, whereas the BTT6020-1ERA features a single 20 m Ω channel. In total the shield provides five Smart High-Side Power Switch Channels. Each is built by a vertical N-channel power MOSFET with charge pump.

Due to the integrated charge pump the channels can be controlled by standard digital IOs (3.3 V and 5 V supported).

The 24V Protected Switch Shield can be easily connected to any Arduino compatible board like the XMC1100 Boot Kit via headers.

Figure 1 24V Protected Switch Shield photo

1.2 Key features

The 24V Protected Switch Shield has the following features:

- An Arduino Uno R3, XMC1100 Boot Kit, or similar board connected to the shield can control the five power channels via the general IO pins.
- Drives resistive, capacitive and inductive loads with PWM or in DC (eg. truck bulbs, car bulbs, valves, motors, relays, capacitors, LEDs...)
 - Infineon PROFET[™] devices have an integrated charge pump, internal protection features and a current feedback to the ADC of the microcontroller
 - Supply voltage: Functional range: 5V 48V; Nominal range: 8V 36V
 - Nominal Current up to 5 A per channel restricted due to the limited power dissipation of the PCB (BTT6020-1ERA nominal Current: 7 A)
 - PWM (Pulse Width Modulation) via input pins up to 400 Hz
 higher frequencies possible depending on load, input voltage and duty cycle
- Diagnosis of the load / current feedback
 - Accurate feedback on the state of the load to the ADC of the microcontroller (current measurement & Fault detection).
 - Possibility to build feedback loops from the load side to the microcontroller
- Protection of load and driver circuit
 - Protection against overcurrent on the load side via diagnosis feedback
 - thermal protection of the driver
 - Overcurrent protection on the driver side (see datasheet)
 - Fault detection via IS pin
 - Protection against high transient voltages (ESD, ISO pulses)
 - Low conducted emissions
- Reverse current blocking with IPD50P04P4L-11

Figure 2

24V Protected Switch Shield driving a valve and water pump

1.3 Block diagram of an automotive light control

Figure 3 depicts the Block diagram of the 24V Protected Switch shield. The IS pins of all 3 devices used for the current sensing could be connected to a single analog digital converter at the μ C. But for simplification each IS pin is connected to an own analog digital converter. The microcontroller and its power supply are not part of the shield.

Application circuit for a 5 channel automotive light control with BTT6030-2ERA

2 24V Protected Switch Shield board description

For a safe and sufficient functionality, discrete components are necessary. Refer to the Datasheet to check which components are needed.

Figure 4, Figure 5 and Figure 6 show the schematics plus the corresponding layout of the 24V Protected Switch Shield. The Bill of material (BOM) can be found in Figure 7.

2.1 Schematics

In Figure 4 the schematics of the 24V Protected Switch Shield is shown. The schematics are based on the application circuit in the BTT6030-2ERA Datasheet.

Schematics 24V Protected Switch Shield with PROFETTM+ 24V for Arduino

2.2 Layout

Figure 5 and Figure 6 show the layout of the 24V Protected Switch Shield.

Figure 5

24V Protected Switch Shield - Bottom and top layers

24V Protected Switch Shield with PROFETTM+ 24V for Arduino - Layout

Protected Switch Shield with PROFET[™]+ 24V for Arduino

Part	Value	Package	Description	Qty	Placing
C1, C2, C4, C5, C7	10n /50V	0603-CAP	Capacitor	5	yes
C3, C6, C8	100p /50V	0603-CAP	Capacitor	3	yes
С9	68n /50V	0603-CAP	Capacitor	1	yes
C10, C11, C12	100n /50V	0603-CAP	Capacitor	3	yes
D1, D3, D5	6.8V	SMD-SOD80	Zener Diode	3	yes
D2, D4, D6	BAS21	SOT23	Silicon Schottky Diode	3	yes
D7	10V	SMD- SOD80	Zener Diode	1	yes
D8	58V	SMA	Supressor	1	yes
IPD50P04P4L-11	HW_INFINEON	PG-TO252-3-313	MOSFET	1	yes
R1, R2, R3, R4, R5, R13, R14, R16, R17, R19, R34	10k	0603	Resistor	11	yes
R6, R18, R25, R26, R27,					
R28	4.7k	0603	Resistor	6	yes
R7, R22, R29	0.027k	0603	Resistor	3	yes
R9, R20, R31	1.2k	R1206	Resistor	3	yes
R10, R11 R21, R23, R32	47k	0603	Resistor	5	yes
BTT6030_2ERA	INFINEON	TDSO_14	2Ch PROFET™+ 24V	2	yes
BTT6020_1ERA	INFINEON	TDSO_14	1Ch PROFET™+ 24V	1	yes
(R8), (R12), (R15), (R24), (R30), (R33) R(35), R(36), R(37)	10k	0603	Resistor	9	no
X2			MKDS 1/ 8-3,5 TERMINAL BLOCK PLUGGABLE, 8 POSITION	1	yes
JP1			5-pin 2.54mm male long header	1	yes
JP2			6-pin 2.54mm male long header	1	yes
JP3, JP4			8-pin 2.54mm male long header	2	yes
JP5			10-pin 2.54mm male long header	1	yes

24V Protected Switch Shield with PROFETTM+ 24V for Arduino - Bill of Material (BOM)

2.3 Pin assignment

To use the 24V Protected Switch Shield the necessary control signals can be applied directly at the connectors. There is no need to use a microcontroller compatible with Arduino or XMC 1100 Boot Kit to get the 24V Protected Switch Shield into an application. The control pins are logic level inputs which can be driven by any other microcontroller or with logic level signals. Besides the supply voltage V_{bat} has to be provided to the V_{bat} connector. Figure 8 shows the pinout/connectors of the 24V Protected Switch Shield.

2.4 Pin definitions and functions

Table 1

Pin	Symbol	I/O	Function
GND	GND	-	Ground
D2	DSEL_0	1	Diagnostic select PROFET [™] + 24V device no. 0
			Selects if the diagnosis of channel 0 or 1 is muxed to the IS Pin
D3	IN1_0	I	Input 1 PROFET [™] + 24V device no. 0
			Input to switch channel 1 on PROFET [™] + 24V device no. 0
D4	IN0_1	1	Input 0 PROFET [™] + 24V device no. 1
			Input to switch channel 0 on PROFET [™] + 24V device no. 1
D5	DEN_1	I	Diagnosis enable PROFET [™] + 24V device no. 1
			Turns diagnosis for PROFET [™] + 24V device no. 1 on or off
D6	DSEL_1	Ι	Diagnostic select PROFET [™] + 24V device no. 1
			Selects if the diagnosis of channel 0 or 1 is muxed to the IS Pin
D7	IN1_1	1	Input 1 PROFET [™] + 24V 1
			Input to switch channel 1 on PROFET [™] + 24V device no. 1
D8	IN0_2	I	Input PROFET [™] + 24V 2
			Input to switch channel on PROFET [™] + 24V device no. 2
D9	DEN_2	I	Diagnosis enable PROFET [™] + 24V 2
			Turns diagnosis for PROFET [™] + 24V device no. 2 on or off
A0	IS_0	0	Sense PROFET™+ 24V 0
			Current sense of PROFET [™] + 24V device no. 0
A1	IS_1	0	Sense PROFET [™] + 24V 1
			Current sense of PROFET [™] + 24V device no. 1
A2	IS_2	0	Sense PROFET [™] + 24V 2
			Current sense of PROFET [™] + 24V device no. 2
A3	IN0_0	1	Input 0 PROFET [™] + 24V device no. 0
			Input to switch channel 0 on PROFET [™] + 24V device no. 0
A4	DEN_0	1	Diagnosis enable PROFET [™] + 24V device no. 0
			Turns diagnosis for PROFET [™] + 24V device no. 0 on or off
OUTy_x	OUTy_x	0	Power output of channel y on PROFET [™] + 24V device no. x
V_{bat}	Vs	-	Supply

3 BTT6030-2ERA overview

The BTT6030-2ERA is a 32 m Ω dual channel Smart High-Side Power Switch, embedded in a TDSO-14, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to 2 x P21 W 24 V or 1 x 70 W 24 V, as well as LEDs in the harsh automotive environment. For details please refer to the <u>Datasheet</u>.

3.1 Key features of the BTT6030-2ERA PROFET[™]+24V

- Two channel device
- Very low stand-by current
- 3.3 V and 5 V compatible logic inputs
- Electrostatic discharge protection (ESD)
- Optimized electromagnetic compatibility
- Logic ground independent from load ground
- Very low power DMOS leakage current in OFF state
- Green product (RoHS compliant)
- AEC qualified

Figure 9 TDSO-14

Block diagram 3.2

Pin assignment BTT6030-2ERA (top view)

3.4 Pin definitions and functions BTT6030-2ERA

Table2

Pin	Symbol	Function			
1	GND	Ground			
2	IN0	INput channel 0; Input signal for channel 0 activation			
3	DEN	Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device			
4	IS	Sense; Sense current of the selected channel			
5	DSEL	Diagnostic SELection; Digital signal to select the channel to be diagnosed			
6	IN1	INput channel 1; Input signal for channel 1 activation			
7, 11	NC	Not Connected; No internal connection to the chip			
8, 9, 10	OUT1	OUTput 1; Protected high side power output channel 1			
12, 13, 14	OUT0	OUTput 0; Protected high side power output channel 0			
Cooling Tab	Vs	Voltage Supply; Battery voltage			

4 BTT6020-1ERA overview

The BTT6020-1ERA is a 20 m Ω single channel Smart High-Side Power Switch, embedded in a TDSO-14, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially designed to drive lamps up to 5 x P21 W 24 V or 1 x 70 W 24 V, as well as LEDs in the harsh automotive environment. For details please refer to the Datasheet.

4.1 Keyfeatures of the BTT6030-2ERA PROFET[™]+ 24V

- One channel device
- Very low stand-by current
- 3.3 V and 5 V compatible logic inputs
- Electrostatic discharge protection (ESD)
- Optimized electromagnetic compatibility
- Logic ground independent from load ground
- Very low power DMOS leakage current in OFF state
- Green product (RoHS compliant)
- AEC qualified

4.2 Block diagram

4.3 Pin assingsment

Pin assignment BTT6020-1ERA (top view)

4.4 Pin assingsment

Table 3

Pin	Symbol	Function
1, 2, 7, 8, 9, 13, 14	NC	Not Connected; No internal connection to the chip
3	GND	Ground
4	IN	INput channel; Input signal for channel activation
5	DEN	Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device
6	IS	Sense; Sense current of the selected channel
10, 11, 12	OUT	OUTput; Protected high side power output channel
Cooling Tab	Vs	Voltage Supply; Battery voltage

5 Getting Started

5.1 Target applications

The application targeted by the BT60xx devices is driving lamps in 24V Trucks and Transportation systems. Besides lamps any other inductive, resistive and capacitive load within the electrical characteristics of the PROFET™+24V can be driven by the BT60xx. In the 24V Protected Switch Shield two BTT6030-2ERA and one BTT6020-1ERA are used. Each channel of the BTT6030 is capable of driving up to 4 A (both channels active). The single channel of the BTT6020 is capable of driving up to 7 A. The limited thermal performance of the Shield PCB limits the recommended maximum current to 5 A.

5.2 Typical target applications

With the 24V Protected Switch Shield up to five 24 V loads can be driven. The switches are controlled via the INx (Input x) pins. The BTT60xx also provide a sense current at the IS pin. The Shield provides a fast and easy access to 24 V load switching up to $1 \times 5 A + 4 \times 4 A$.

5.2.1 Getting started: Shield

- Choose loads compatible within the electrical characteristics in the Datasheets of the BTT60xx
 - E.g. 1 x 70 W 24 V lamp and 4 x 21 W 24 V lamps (Truck bulbs)
- Choose a DC adapter. The nominal input of the Shield is 8 36 V DC. Maximum Voltage is 48 V
- Connect the Shield to Arduino Uno R3 or XMC 1100 Boot Kit.
- Connect power supply (5 V) to the Arduino Uno R3 or XMC 1100 Boot Kit (Micro USB). For the XMC Boot Kit a standard mobile phone charger can be used.
- Program the controller board with the lamp switching software (see 5.2.2).
- Connect the Out connectors of the shield
 - o 70 W to OUT0_2
 - 21 W to Out0_1, Out 1_1, Out 0_0 and Out 1_1
- Connect the DC adapter to the Power Shield (V_{bat}, GND).

Figure 15 24V Protected Switch Shield connectors

5.2.2 Getting started: Software

A simple example software for the XMC1100 Boot Kit is provided.

- Connect the XMC 1100 Boot Kit with a micro USB cable to the USB port of your PC.
- Download and install DAVE[™] Free Development Platform for Code Generation from the Infineon website <u>DAVE[™]</u>. Download the software example from the Infineon website: <u>Infineon-</u> <u>24V ProtectedSwitchShield with Profet+24V for Arduino DAVE Example V10.zip-SW-v01 00-EN.zip</u>
- Start DAVE[™] and import project file
 "Infineon-24V_ProtectedSwitchShield_with_Profet+24V_for_Arduino_DAVE_Example_V10.zip-SW-v01_00-EN.zip":

1: Select File \rightarrow Import:

Edit Source Reta	ctor Navigate Pri	oject Search
New	Alt+Shift+N	1 病
Open File		-
Close	⊂trl+₩	() ()
Close All	Ctrl+Shift+₩	_
Save	Ctrl+S	
Save As		
Save All	Ctrl+Shift+S	
Revert		
Move		
Rename	F2	
Refresh	F5	
Convert Line Delimiters	s То 🕨	•
Print	Ctrl+P	
Switch Workspace	,	•
Restart		
Import		
Export		
Properties	Alt+Enter	
Exit		

2: Choose Infineon \rightarrow DAVE Project:

👽 Import	
Select	Ľ
Select an import source:	
Image: Second	
? <back next=""> Einish</back>	Cancel

3: Select archive file \rightarrow Browse for the downloaded file \rightarrow select the project \rightarrow click finish:

😺 Import DAVE Projects								
Import DAVE projects								
Import Existing DAVE Projects								
O Select Root Directory	Browse							
Select Archive File G:\AIM AP D PD VI\APE\PersonalFolder\Git	Browse							
Project list	<u></u>							
ProtectedSwitchForArduino(ProtectedSwitchForArduino)	Select All							
	Deselect All							
	Refresh							
Copy Projects Into Workspace								
	1							
< Back Mext > Einish	Cancel							

4: Build the code:

💺 D	AVE	CE - D	AVE	™ - C:\	Workspace	S\DAVE-4	1.1\W5	2015	10_30	1		
Eile	<u>E</u> dit	Sour	ce	Refac <u>t</u> o	or <u>N</u> avigate	Project	Search	<u>R</u> un	DAVE	<u>W</u> indow	ı <u>H</u> elp	
H		æ	7	2 2	> 🔂 🔻	1 t a è	<u>u</u> 📃 I	0 🗉	•	2	莽·	
6	C/C+	+ Proj	ects	x 🕻	Project Exp	lorer			¢ <	> @	🗆 🛓	5 5
+…	🧀 P	roted	ted	Switch	ForArduino	[Active	- Debug	1				

5: Start the Debugger

🍯 D	AVE (E - DAV	E™ - C:\W	orkspaces	DAVE-4	.1\W5_	2015_	10_30			
<u>F</u> ile	<u>E</u> dit	Source	Refac <u>t</u> or	<u>N</u> avigate	Project	Se <u>a</u> rch	<u>R</u> un	DAVE	<u>W</u> indow	/ <u>H</u> elp)
H		e 🖊	2 🎤	當義	1 🕇 🖻	s 🔳 (0 8	•	2	菸	-
6	c/c+·	+ Projects	s 🛛 🕒	Project Expl	orer			(÷ =)	> @	- 4	5 1
+	🔑 P	rotected	dSwitchFo	rArduino	Active	- Debug]				

6: The first time you start the Software a new debug configuration needs to be created. Select the GDB SEGGER J-Link Debugger and click on new launch configuration. Keep all default values and click on Debug

Debug Configurations		
Create, manage, and run conf	igurations	Ť.
type filter text	Configure launch settings from this dialog:	
?		Debug Close

7: Confirm the perspective switch

8: Run the code \rightarrow the loads will be powered via PWM

5.2.3 Software hints

The Software will drive the 5 channels in different PWM configurations. Here is the mapping between Profet channel and PWM configuration:

Channel	Dutycycle	Frequency
PROFET0 Channel 0	100%	
PROFET0 Channel 1	50%	200Hz
PROFET1 Channel 0	75%	320Hz
PROFET1 Channel 1	60%	400Hz
PROFET2	80%	120Hz

These values can be changed either via double click on the corresponding PWM APP:

	General Settings Event Setting	gs Pin Settings
	Select timer module:	J4 🔽
	PWM Settings Frequency [Hz]:	400
	Duty cycle [%]:	60
	Resolution [nsec]:	62.5
	Start after initialization	
	Enable single shot mode	
PWM		
PWM_PROFET1_C1		

Or during runtime using the API. To get information about the API right click on the APP and select APP Help:

The Help will open in a new Window. Selecting Apps → Methods shows a documentation of all available methods for this type of APP.

The Software does not only drive the loads in PWM. It also measures continuously the Sense signal and calculates out of it the load current during the high phase of the PWM period. The calculated currents are then stored in global variables enabling the user to process the values in his code e.g. for a protection strategy or to calculate the power consumption. For more details on how the load current is calculated check the documentation in the code. The provided software is an example and is not a reference software.

5.2.4 Hardware hints

The following connections of the PROFET Arduino Shield cannot be addressed by an Arduino Uno μ C. At the μ C they are the analog inputs, but for the PROFET Arduino Shield digital outputs are needed!

- PIN: A3 → DEN_0 Diagnose enable of BTT6030-2ERA
- PIN: A4 → IN0_0 Input of BTT6030-2ERA

Therefore output OUT0_0 at Arduino Shield cannot be addressed and the diagnostic/sense current IS of both outputs OUT0_0 and OUT1_0 cannot be monitored.

Revision History

Major changes since the last revision

Page or Reference	Description of change	
V 1.0	Created the document	
V 1.1	Updated document; new package BTT6030-2ERA and BTT6020-1ERA	

Trademarks of Infineon Technologies AG

AURIX[™], C166[™], CanPAK[™], CIPOS[™], CoolGaN[™], CoolSiC[™], CoolSiC[™], CORECONTROL[™], CROSSAVE[™], DAVE[™], DI-POL[™], DrBlade[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPACK[™], EconoPIM[™], EiceDRIVER[™], eupec[™], FCOS[™], HITFET[™], HybridPACK[™], Infineon[™], ISOFACE[™], IsoPACK[™], i-Wafer[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OmniTune[™], OPTIGA[™], OptIMOS[™], ORIGA[™], POWERCODE[™], PRIMARION[™], PrimePACK[™], PrimeSTACK[™], PROFET[™], PRO-SIL[™], RASIC[™], REAL3[™], ReverSave[™], SatRIC[™], SIEGET[™], SIPMOS[™], SmartLEWIS[™], SOLID FLASH[™], SPOC[™], TEMPFET[™], thinQ![™], TRENCHSTOP[™], TriCore[™].

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition <2019-12-16>

Published by Infineon Technologies AG

81726 Munich, Germany

© 2019 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference AppNote Number

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.8-EVALZ ADP1740-1.5-EVALZ ADP1870-0.3-EVALZ ADP1874-0.3-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ AS3606-DB BQ25010EVM BQ3055EVM ISLUSBI2CKIT1Z LM2734YEVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ ADP122UJZ-REDYKIT ADP166Z-REDYKIT ADP170-1.8-EVALZ ADP171-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP5020CP-EVALZ CC-ACC-DBMX-51 ATPL230A-EK MIC23250-S4YMT EV MIC26603YJL EV MIC33050-SYHL EV TPS60100EVM-131 TPS65010EVM-230 TPS71933-28EVM-213 TPS72728YFFEVM-407 TPS79318YEQEVM UCC28810EVM-002 XILINXPWR-083 LMR22007YMINI-EVM