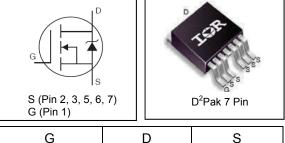


Features


- Advanced Process Technology .
- Ultra Low On-Resistance
- 175°C Operating Temperature .
- Fast Switching
- Repetitive Avalanche Allowed up to Timax .
- Lead-Free, RoHS Compliant •
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and wide variety of other applications.

V _{DSS}	24V
R _{DS(on)} typ.	0.8mΩ
max.	1.0mΩ
D (Silicon Limited)	429A ①
D (Package Limited)	240A

Gate

Drain

Source

Bass Bart Number	Dookogo Tupo	Standar	d Pack	Ordershie Bart Number
Base Part Number Package Type Form		Form	Quantity	Orderable Part Number
AUIRF1324S-7P	D ² Pak 7 Pin	Tube	50	AUIRF1324S-7P

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	429①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	303①	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	240	A
I _{DM}	Pulsed Drain Current ②	1640	
P _D @T _C = 25°C	Maximum Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}			mJ
I _{AR}	Avalanche Current ②	See Fig.14,15, 18a, 18b	A
E _{AR}	Repetitive Avalanche Energy		mJ
dv/dt	Peak Diode Recovery ④	1.6	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Junction-to-Case		0.50	°C/W
$R_{ heta JA}$	Junction-to-Ambient ®		40	C/W

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	24			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.023		V/°C	Reference to 25°C, I_D = 5mA \odot
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.80	1.0	mΩ	V _{GS} = 10V, I _D = 160A ⑤
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} = V _{GS} , I _D = 250µA
gfs	Forward Trans conductance	190			S	V _{DS} = 15V, I _D = 160A
R _G	Gate Resistance		3.0		Ω	
1	Drain-to-Source Leakage Current			20	μA	V _{DS} =24V, V _{GS} = 0V
I _{DSS}				250		V _{DS} =24V, V _{GS} = 0V V _{DS} =19V,V _{GS} = 0V,T _J =125°C
1	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200	ПА	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Total Gate Charge		180	252		I _D = 75A
Gate-to-Source Charge		47			V _{DS} = 12V
Gate-to-Drain Charge		58		nC	V _{GS} = 10V⑤
Total Gate Charge Sync. (Qg - Qgd)		122			
Turn-On Delay Time		19			V _{DD} = 16V
Rise Time		240		-	I _D = 160A
Turn-Off Delay Time		86		115	R _G = 2.7Ω
Fall Time		93			V _{GS} = 10V⑤
Input Capacitance		7700			$V_{GS} = 0V$
Output Capacitance		3380			V _{DS} = 19V
Reverse Transfer Capacitance		1930		pF	<i>f</i> = 1.0MHz, See Fig. 5
Effective Output Capacitance (Energy Related)		4780			V_{GS} = 0V, V_{DS} = 0V to 19V \odot
Effective Output Capacitance (Time Related)		4970			V_{GS} = 0V, V_{DS} = 0V to 19V [®]
	Gate-to-Source ChargeGate-to-Drain ChargeTotal Gate Charge Sync. (Qg - Qgd)Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeInput CapacitanceOutput CapacitanceReverse Transfer CapacitanceEffective Output Capacitance (Energy Related)	Gate-to-Source Charge — Gate-to-Drain Charge — Total Gate Charge Sync. (Qg - Qgd) — Turn-On Delay Time — Rise Time — Turn-Off Delay Time — Fall Time — Input Capacitance — Qutput Capacitance — Effective Output Capacitance (Energy Related) —	Gate-to-Source Charge—47Gate-to-Drain Charge—58Total Gate Charge Sync. (Qg - Qgd)—122Turn-On Delay Time—19Rise Time—240Turn-Off Delay Time—86Fall Time—93Input Capacitance—7700Output Capacitance—3380Reverse Transfer Capacitance (Energy Related)—4780	Gate-to-Source Charge—47—Gate-to-Drain Charge—58—Total Gate Charge Sync. $(Q_g - Q_{gd})$ —122—Turn-On Delay Time—19—Rise Time—240—Turn-Off Delay Time—86—Fall Time—93—Input Capacitance—7700—Output Capacitance—3380—Reverse Transfer Capacitance (Energy Related)—4780—	Gate-to-Source Charge 47 Gate-to-Drain Charge 58 Total Gate Charge Sync. (Qg - Qgd) 122 Turn-On Delay Time 19 Rise Time 240 Turn-Off Delay Time 86 Fall Time 93 Input Capacitance 3380 Qutput Capacitance 1930 Reverse Transfer Capacitance (Energy Related) 4780

	Parameter	Min.	Typ.	Max.	Units	C	onditions
	Continuous Source Current		- 71			MOSFET sy	
IS	(Body Diode)			429 ①		showing the	
	Pulsed Source Current			1640	A	integral reve	erse
ISM	(Body Diode) ②			1640		p-n junction	diode.
V_{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C,I _S	= 160A,V _{GS} = 0V ⑤
1			71	107		<u>Т_ = 25°С</u>	V _{DD} = 20V
t _{rr}	Reverse Recovery Time		74	110	ns	<u>T_ = 125°C</u>	I _F = 160A,
0	Boyeroo Boooyery Charge		83	120		<u>T_J = 25°C</u>	di/dt = 100A/µs ⑤
Q _{rr}	Reverse Recovery Charge		92	140	40 nC	<u>T_ = 125°C</u>	
I _{RRM}	Reverse Recovery Current		2.0		Α	T _J = 25°C	
t _{on}	Forward Turn-On Time	Intrinsio	c turn-or	n time is	negligi	ole (turn-on is	dominated by L _S +L _D)

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- ② Repetitive rating; pulse width limited by max. junction temperature.
- 3 Limited by T_{Jmax}, starting T_J = 25°C, L = 0.018mH, R_G = 25 Ω , I_{AS} = 160A, V_{GS} =10V. Part not recommended for use above this value.
- $\label{eq:ISD} \ensuremath{\textcircled{\sc sc star}}\ I_{SD} \leq 160A, \ di/dt \leq 600A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^\circ C.$
- (5) Pulse width \leq 400µs; duty cycle \leq 2%.
- \odot C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

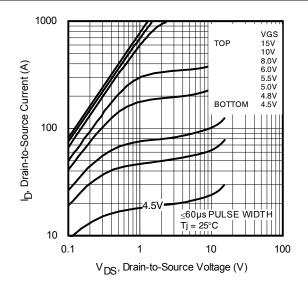


Fig. 1 Typical Output Characteristics

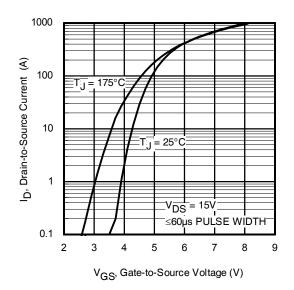


Fig. 3 Typical Transfer Characteristics

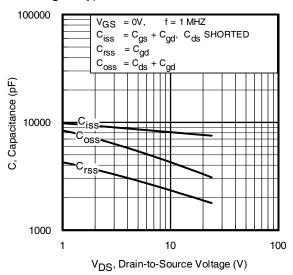


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

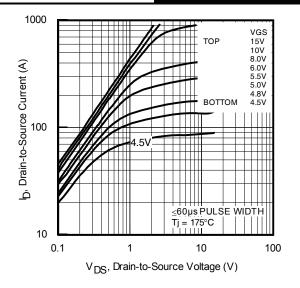
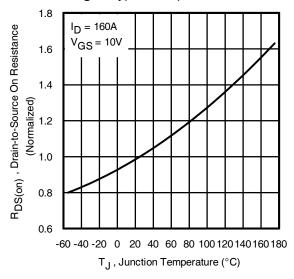
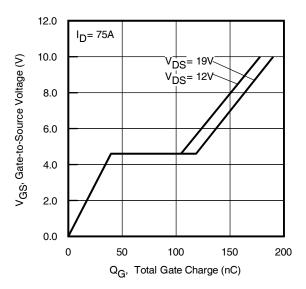
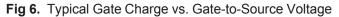
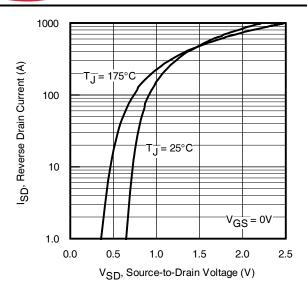
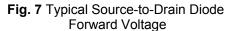


Fig. 2 Typical Output Characteristics


Fig. 4 Normalized On-Resistance vs. Temperature

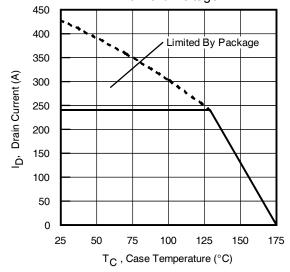


Fig 9. Maximum Drain Current vs. Case Temperature

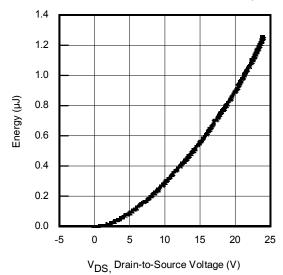


Fig 11. Typical Coss Stored Energy

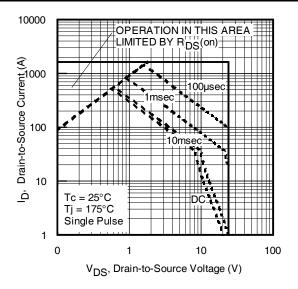


Fig 8. Maximum Safe Operating Area

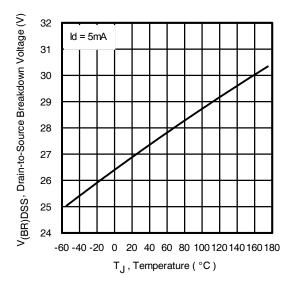


Fig 10. Drain-to-Source Breakdown Voltage

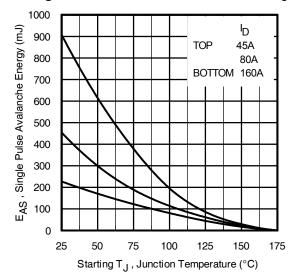


Fig 12. Maximum Avalanche Energy vs. Drain Current

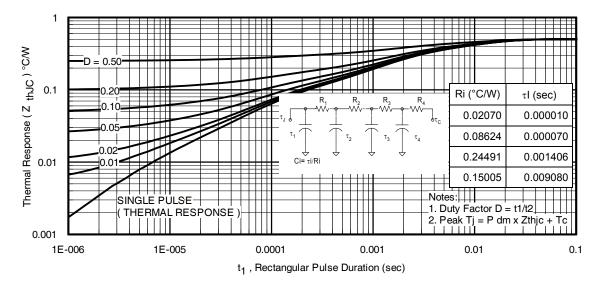


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

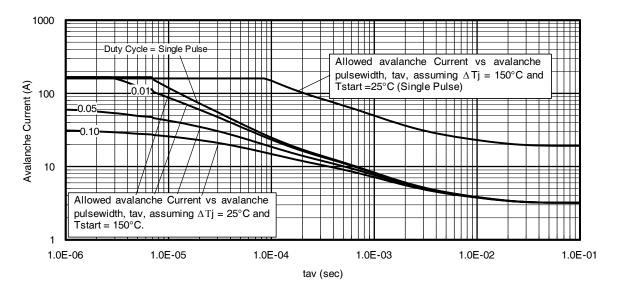
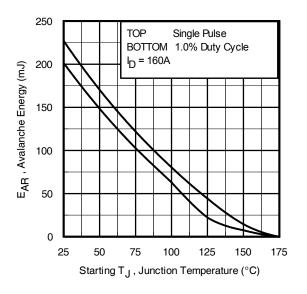
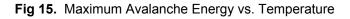



Fig 14. Avalanche Current vs. Pulse width



Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Timax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).
 - tav = Average time in avalanche.
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} \textbf{P}_{D \;(ave)} &= 1/2 \; (\; \textbf{1.3} \cdot \textbf{BV} \cdot \textbf{I}_{av}) = \Delta T / \; \textbf{Z}_{thJC} \\ \textbf{I}_{av} &= 2 \Delta T / \; [\textbf{1.3} \cdot \textbf{BV} \cdot \textbf{Z}_{th}] \\ \textbf{E}_{AS \;(AR)} &= \textbf{P}_{D \;(ave)} \cdot \textbf{t}_{av} \end{split}$$

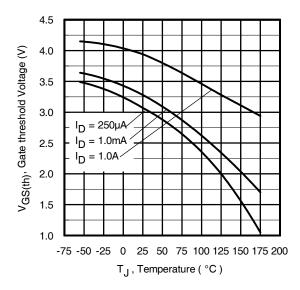
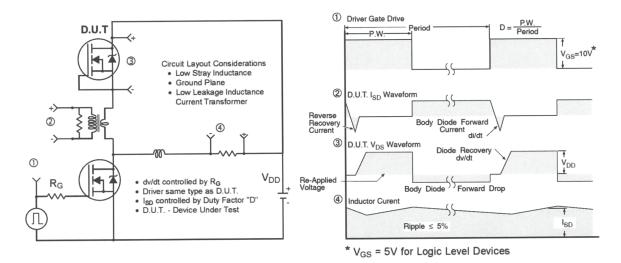
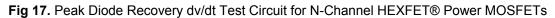




Fig 16. Threshold Voltage vs. Temperature

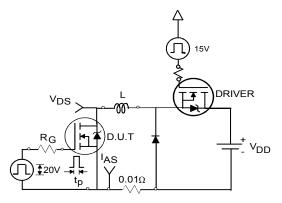


Fig 18a. Unclamped Inductive Test Circuit

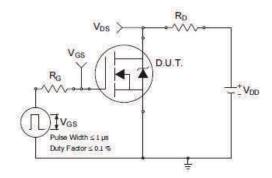


Fig 19a. Switching Time Test Circuit

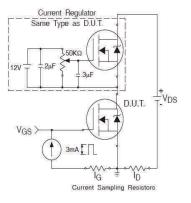


Fig 20a. Gate Charge Test Circuit

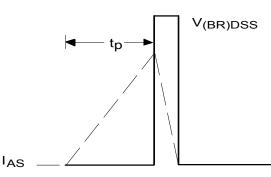
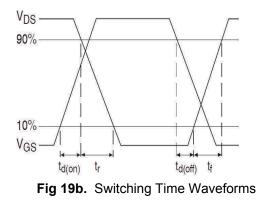
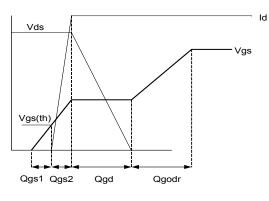
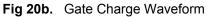
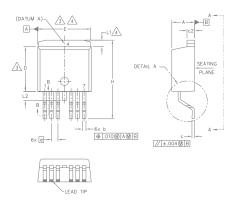
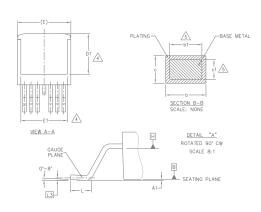





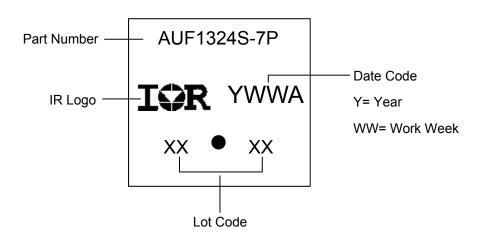
Fig 18b. Unclamped Inductive Waveforms





D²Pak - 7 Pin Package Outline (Dimensions are shown in millimeters (inches))

S Y M	DIMENSIONS					
В	MILLIM	eters	INC	HES	N O T E S	
0 L	MIN.	MAX.	MIN.	MAX.	E S	
А	4.06	4.83	.160	.190		
A1	-	0.254	-	.010		
b	0.51	0.99	.020	.036		
b1	0.51	0.89	.020	.032	5	
С	0.38	0.74	.015	.029		
с1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	7.42	.270	.292	4	
Е	9.65	10.54	.380	.415	3,4	
E1	6.22	8.48	.245	.334	4	
е	1.27	BSC	.050	BSC		
Н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	-	1.68	-	.066	4	
L2	-	1.78	-	.070		
L3	0.25	BSC	.010	BSC		


NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB. EXCEPT FOR DIMS. E, E1 & D1.

D²Pak - 7 Pin Part Marking Information

Qualification Information

		Automotive (per AEC-Q101)			
Qualificat	tion Level	Comments: This part number(s) passed Automotive qualification. Infineor Industrial and Consumer qualification level is granted by extension of the high Automotive level.			
Moisture	Sensitivity Level	D ² -Pak 7 Pin MSL1			
	Machine Model	Class M4 [†] AEC-Q101-002			
ESD	Human Body Model	Class H3A [†] AEC-Q101-001			
	Charged Device Model	Class C3 [†] AEC-Q101-005			
RoHS Co	mpliant	Yes			

† Highest passing voltage.

Revision History

Date	Comments		
9/30/2015	 Updated datasheet with corporate template Corrected ordering table on page 1. Updated typo on GFS on page 2. 		

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P54TU,LF SSM6P69NU,LF DMP22D4UFO-7B