

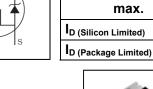
AUIRF1404

40V

3.5mΩ

4.0mΩ

202A6


160A

Features

- Advanced Planar Technology
- Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this Stripe Planar design of HEXFET[®] Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET[®] power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

VDSS

R_{DS(on)} typ.

G	D	S
Gate	Drain	Source

Base part number	Package Type	Standard Pack		Orderable Part Number
Dase part number	Fackage Type	Form Quantit		Orderable Fait Number
AUIRF1404	TO-220	Tube	50	AUIRF1404

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	202©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	143	•
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	160	A
I _{DM}	Pulsed Drain Current ①	808	
P _D @T _C = 25°C	Maximum Power Dissipation	333	W
	Linear Derating Factor	2.2	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 2	620	mJ
I _{AR}	Avalanche Current ①	See Fig.15,16, 12a, 12b	А
E _{AR}	Repetitive Avalanche Energy ①		mJ
dv/dt	Peak Diode Recovery dv/dt③	1.5	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{θJC}	Junction-to-Case 🗇		0.45	
$R_{ hetaCS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{ heta JA}$	Junction-to-Ambient		62	

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

HEXFET[®] Power MOSFET

AUIRF1404

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.039		V/°C	Reference to 25°C, I_D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.5	4.0	mΩ	V _{GS} = 10V, I _D = 121A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} = V _{GS} , I _D = 250μA
gfs	Forward Trans conductance	76			S	V _{DS} = 25V, I _D = 121A
1	Drain-to-Source Leakage Current			20	μA	V _{DS} =40 V, V _{GS} = 0V
I _{DSS}	Drain-lo-Source Leakage Current			250	μΑ	V _{DS} =32V,V _{GS} = 0V,T _J =150°C
1	Gate-to-Source Forward Leakage			100	n ^	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Q_{g}	Total Gate Charge		131	196		I _D = 121A
Q _{gs}	Gate-to-Source Charge		36		nC	V _{DS} = 32V
Q _{gd}	Gate-to-Drain Charge		37	56		V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		17			V _{DD} = 20V
t _r	Rise Time		190		-	I _D = 121A
t _{d(off)}	Turn-Off Delay Time		46		ns	R _G = 2.5Ω
t _f	Fall Time		33			R _D = 0.2Ω
L _D	Internal Drain Inductance		4.5		nH	Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance		7.5			from package and center of die contact
C _{iss}	Input Capacitance		5669			V _{GS} = 0V
C _{oss}	Output Capacitance		1659			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		223		pF	f = 1.0MHz, See Fig. 5
C _{oss}	Output Capacitance		6205		pr	$V_{GS} = 0V, V_{DS} = 1.0V f = 1.0MHz$
C _{oss}	Output Capacitance		1467			$V_{GS} = 0V, V_{DS} = 32V f = 1.0MHz$
C _{oss eff.}	Effective Output Capacitance		2249			V_{GS} = 0V, V_{DS} = 0V to 32V
Diode Chara	acteristics					
	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current (Body Diode)			2026		MOSFET symbol showing the
1	Pulsed Source Current			808	Δ	integral reverse

		(Body Diode)				۸	showing the $(_{\leftarrow} \mathbf{x})$
	SM	Pulsed Source Current			808	А	integral reverse
15	SM	(Body Diode) ①			000		p-n junction diode.
V	SD	Diode Forward Voltage			1.5	V	$T_{J} = 25^{\circ}C, I_{S} = 121A, V_{GS} = 0V$ (4)
t _n	r	Reverse Recovery Time		78	117	ns	T _J = 25°C ,I _F = 121A
C) rr	Reverse Recovery Charge		163	245	nC	di/dt = 100A/µs ④
tc	n	Forward Turn-On Time	Intrinsic	turn-on	time is	negligi	ble (turn-on is dominated by $L_{S}+L_{D}$)

Notes:

 $\odot\;$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)

② starting $T_J = 25^{\circ}C$, $L = 85\mu$ H, $R_G = 25\Omega$, $I_{AS} = 121$ A, $V_{GS} = 10$ V. (See fig. 12)

 $\label{eq:ISD} \textcircled{3} I_{SD} \leq 121A, \, di/dt \leq 130A/\mu s, \, V_{DD} \leq V_{(BR)DSS}, \, T_J \leq 175^\circ C. \end{gathered}$

(a) Pulse width \leq 400µs; duty cycle \leq 2%.

 \odot C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.

© Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 160A.

 $\oslash \ R_{\scriptscriptstyle \theta}$ is measured at $T_{\scriptscriptstyle J}$ of approximately 90°C.

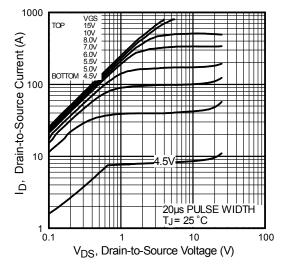


Fig. 1 Typical Output Characteristics

in the second se

1000

Fig. 2 Typical Output Characteristics

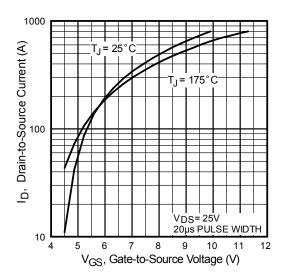


Fig. 3 Typical Transfer Characteristics

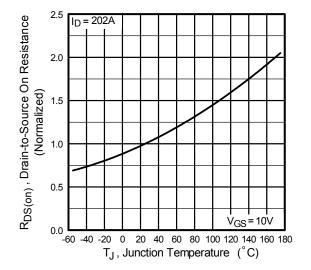
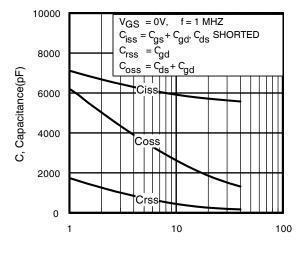



Fig. 4 Normalized On-Resistance vs. Temperature

 V_{DS} , Drain-to-Source Voltage (V)

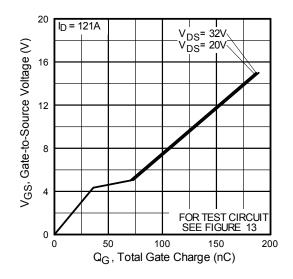
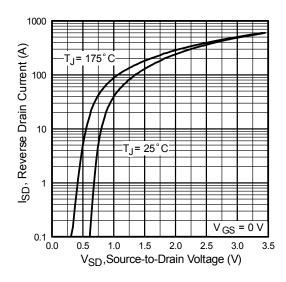
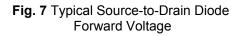




Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

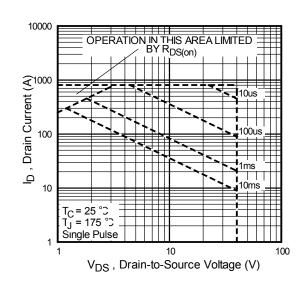


Fig 8. Maximum Safe Operating Area

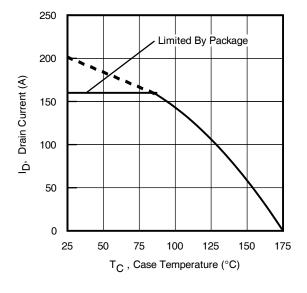


Fig 9. Maximum Drain Current vs. Case Temperature

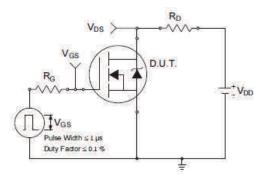


Fig 10a. Switching Time Test Circuit

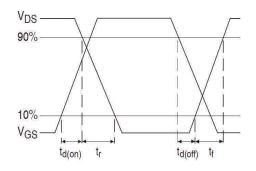


Fig 10b. Switching Time Waveforms

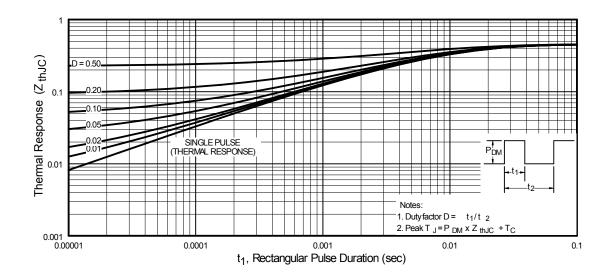


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

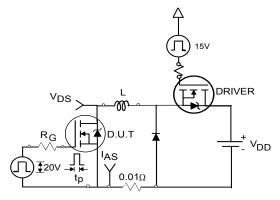


Fig 12a. Unclamped Inductive Test Circuit

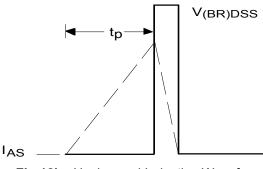
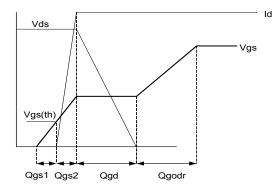



Fig 12b. Unclamped Inductive Waveforms

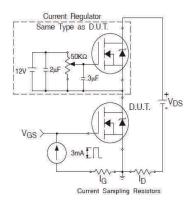


Fig 13b. Gate Charge Test Circuit

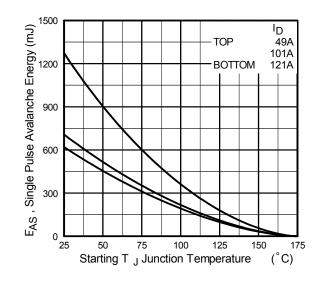


Fig 12c. Maximum Avalanche Energy vs. Drain Current

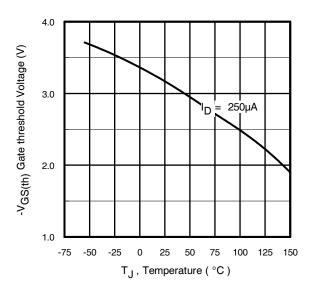


Fig 14. Threshold Voltage vs. Temperature

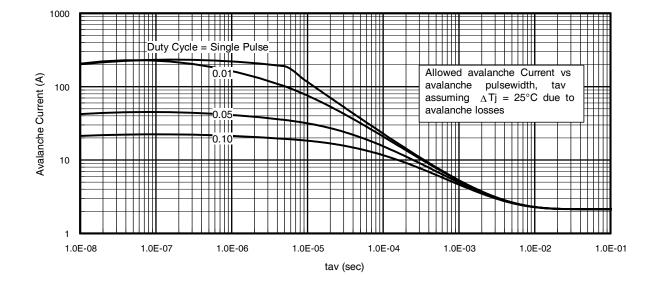
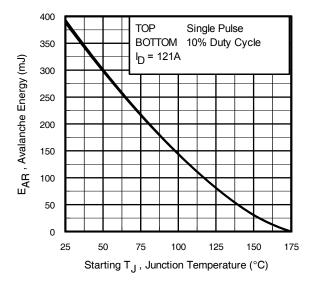
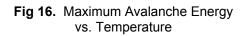




Fig 15. Typical Avalanche Current vs. Pulse width



Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).
 - tav = Average time in avalanche.
 - D = Duty cycle in avalanche = tav ·f
 - ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} \textbf{P}_{D \;(ave)} &= 1/2 \; (\; 1.3 \cdot \textbf{BV} \cdot \textbf{I}_{av}) = \Delta T / \; \textbf{Z}_{th JC} \\ \textbf{I}_{av} &= 2 \Delta T / \; \textbf{[} 1.3 \cdot \textbf{BV} \cdot \textbf{Z}_{th} \textbf{]} \\ \textbf{E}_{AS \;(AR)} &= \textbf{P}_{D \;(ave)} \cdot \textbf{t}_{av} \end{split}$$

Peak Diode Recovery dv/dt Test Circuit

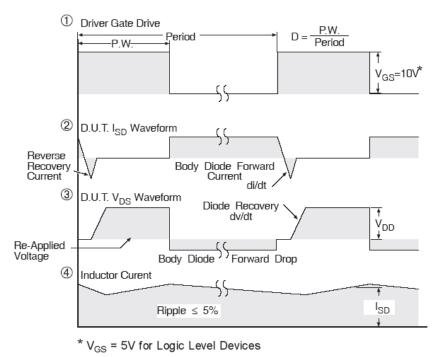
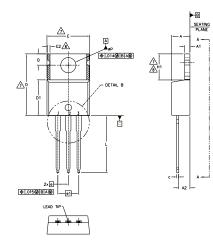
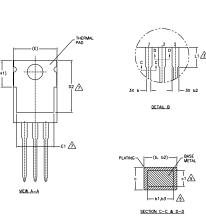




Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

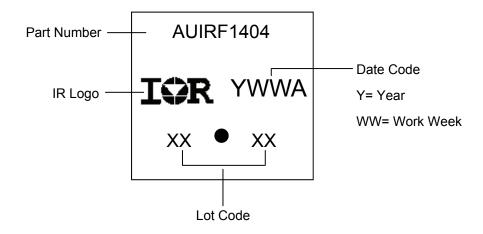
NOTES:	
--------	--

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994. 1.-
- 2.-
- 3 -
- DIMENSIONING AND TOLERANGUNG AS FER ASME 114.5 MF 1994. DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS] LEAD DIMENSION AND FINISH UNCONTROLLED IN L1. DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE 4.-MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY. /5.-
- 6.-CONTROLLING DIMENSION : INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1 7. – 8. –
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- UTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE. 9.-

SYMBOL	MILLIM	ETERS	INC	INCHES		
	MIN.	MAX.	MIN.	MAX.	NOTES	
A	3.56	4.83	.140	.190		
A1	1.14	1.40	.045	.055		
A2	2.03	2.92	.080	.115		
b	0.38	1.01	.015	.040		
b1	0.38	0.97	.015	.038	5	
b2	1.14	1.78	.045	.070		
b3	1.14	1.73	.045	.068	5	
с	0.36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
E	9.65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0.76	-	.030	8	
е	2.54 5.08	BSC	.100	BSC		
e1	5.08	BSC	.200	BSC		
H1	5.84	6.86	.230	.270	7,8	
L	12.70	14.73	.500	.580		
L1	3.56	4.06	.140	.160	3	
øР	3.54	4.08	.139	.161		
Q	2.54	3.42	.100	.135		
			-			

LEAD ASSIGNMENTS

<u>HEXFET</u> 1.- GATE 2.- DRAIN 3.- SOURCE


IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

TO-220AB package is not recommended for Surface Mount Application.

Qualification Information

		Automotive (per AEC-Q101)				
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Sensitivity Level		TO-220AB	N/A			
	Machina Madal		Class M4 (+/- 425V) [†]			
	Machine Model	AEC-Q101-002				
		Class H2 (+/- 4000V) [†]				
ESD	Human Body Model	AEC-Q101-001				
	Charged Device Medel	Class C5 (+/- 1125V) [†]				
	Charged Device Model	AEC-Q101-005				
RoHS Compliant		Yes				

+ Highest passing voltage.

Revision History

Date	Comments			
9/30/2015	 Updated datasheet with corporate template. Corrected typo on IDSS test condition on page 2. Updated Package outline on page 9. 			
9/18/2017	Corrected typo error on part marking on page 9.			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7