

AUIRFP4409

HEXFET[®] Power MOSFET

Features

- Advanced Process Technology
- Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this HEXFET[®] Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

D	V _{DSS}	300V
	R _{DS(on) typ.}	56mΩ
G	max	69mΩ
	Ι _D	38A

G	D	S
Gate	Drain	Source

Base part number	Package Type	Standard Pac	ck	Orderable Part Number	
Dase part number	i ackage i ype	Form	Quantity		
AUIRFP4409	TO-247AC	Tube	25	AUIRFP4409	

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	38	
$I_D @ T_C = 100^{\circ}C$ Continuous Drain Current, $V_{GS} @ 10V$		27	А
I _{DM}	Pulsed Drain Current ①	152	
P _D @T _C = 25°C	Maximum Power Dissipation	341	W
	Linear Derating Factor	2.3	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS (Thermally limited)} Single Pulse Avalanche Energy ②		541	mJ
Tj T _{STG}	Operating Junction and Storage Temperature Range	-55 to + 175	- °C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Junction-to-Case ®		0.44	
$R_{ ext{ heta}CS}$	Case-to-Sink, Flat Greased Surface	0.24		°C/W
$R_{ ext{ heta}JA}$	Junction-to-Ambient Ø		40	

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	300			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.24		V/°C	Reference to 25°C, I_D = 3.5mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		56	69	mΩ	V _{GS} = 10V, I _D = 24A ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.0	V	V _{DS} = V _{GS} , I _D = 250µA
1	Drain to Source Lookage Current			20		V _{DS} =300 V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	V _{DS} =300V,V _{GS} = 0V,T _J =125°C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	ПА	V _{GS} = -20V
R _G	Gate Resistance		1.3		Ω	

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

gfs	Forward Transconductance	45			S	V _{DS} = 50V, I _D =24A
Qg	Total Gate Charge		83	125		I _D = 24A
Q _{gs}	Gate-to-Source Charge		28	42	nC	V _{DS} = 150V
Q_{gd}	Gate-to-Drain Charge		26	39		V _{GS} = 10V
t _{d(on)}	Turn-On Delay Time		18			V _{DD} = 195V
t _r	Rise Time		23			I _D = 24A
t _{d(off)}	Turn-Off Delay Time		34		ns	R _G = 2.2Ω
t _f	Fall Time		20			V _{GS} = 10V
C _{iss}	Input Capacitance		5168			V _{GS} = 0V
C _{oss}	Output Capacitance		300			V _{DS} = 50V
C _{rss}	Reverse Transfer Capacitance		77		рF	f = 1.0MHz
$C_{\text{oss eff.}(\text{ER})}$	Effective Output Capacitance (Energy Related)		196		P'	V _{GS} = 0V, VDS = 0V to 240V⑥ See Fig.11
Coss eff.(TR)	Output Capacitance (Time Related)		265			$V_{GS} = 0V, VDS = 0V \text{ to } 240V$

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)①			40		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			160	A	integral reverse of the second s
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 24A, V_{GS} = 0V ④$
t _{rr}	Reverse Recovery Time		302		ns	<u>T_J = 25°C</u> V _{DD} = 255V
۲r	Reverse Recovery Time		379		115	<u>T」= 125°C</u> I _F = 24A,
0	Deverse Resevery Charge		1739			<u>T_J = 25°C</u> di/dt = 100A/µs ④
Q _{rr}	Reverse Recovery Charge		2497		nC	<u>T_J = 125°C</u>
I _{RRM}	Reverse Recovery Current		13		Α	T _J = 25°C

Notes:

- ${\rm \bigcirc}~$ Repetitive rating; pulse width limited by max. junction temperature.
- @ Recommended max EAS limit, starting T_J = 25°C, L = 2.05mH, R_G = 50 Ω , I_{AS} = 24A, V_{GS} =10V.
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- S Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- © C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques
- refer to application note #AN-994 http://www.irf.com/technical-info/ app notes/an-994.pdf
- ⑧ Rθ is measured at T_J approximately 90°C

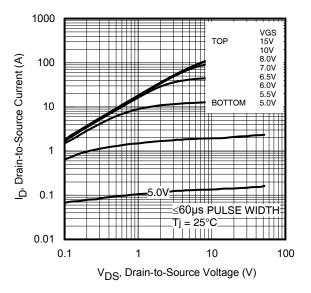
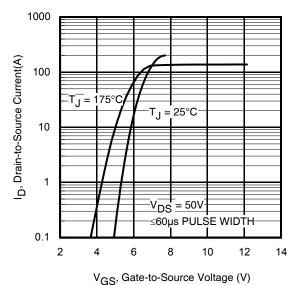



Fig 1. Typical Output Characteristics

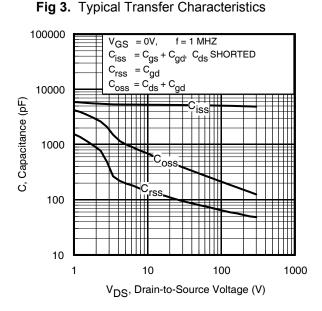
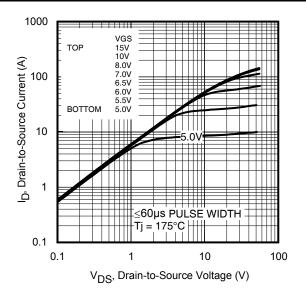
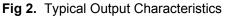




Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

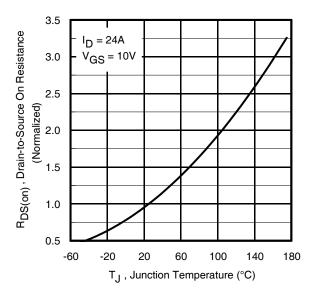
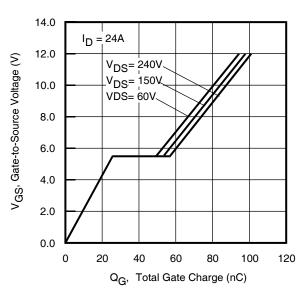
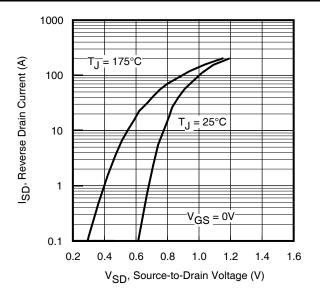
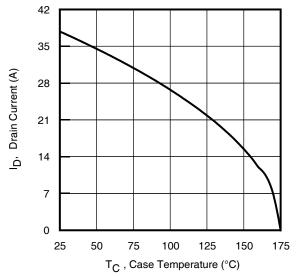


Fig 4. Normalized On-Resistance vs. Temperature


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

AUIRFP4409

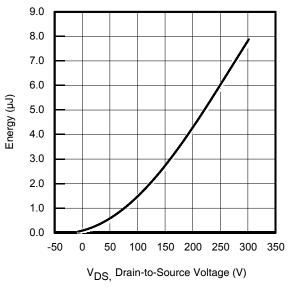
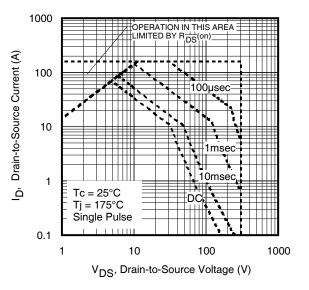



Fig 11. Typical Coss Stored Energy

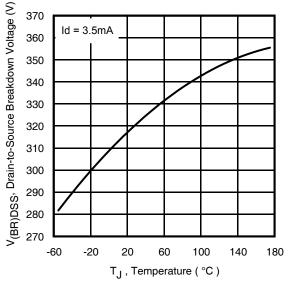


Fig 10. Drain-to-Source Breakdown Voltage

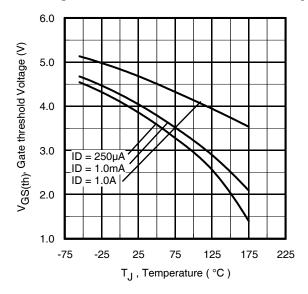


Fig 12. Threshold Voltage vs. Temperature

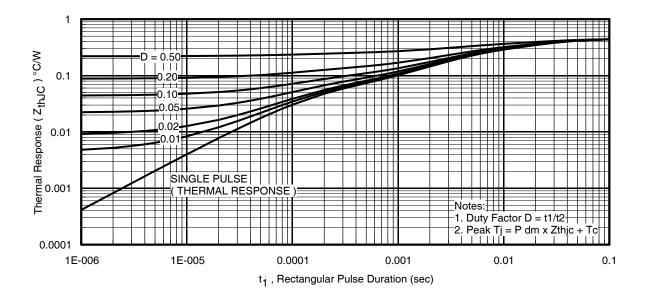
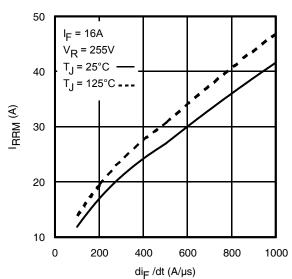
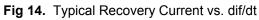




Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

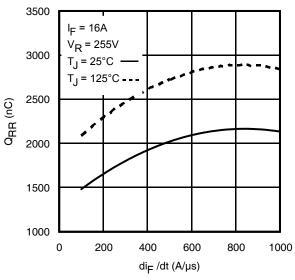


Fig 16. Typical Stored Charge vs. dif/dt

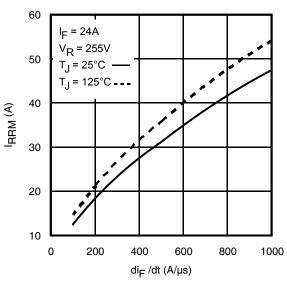
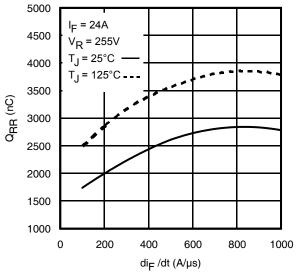
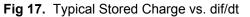




Fig 15. Typical Recovery Current vs. dif/dt

infineon

AUIRFP4409

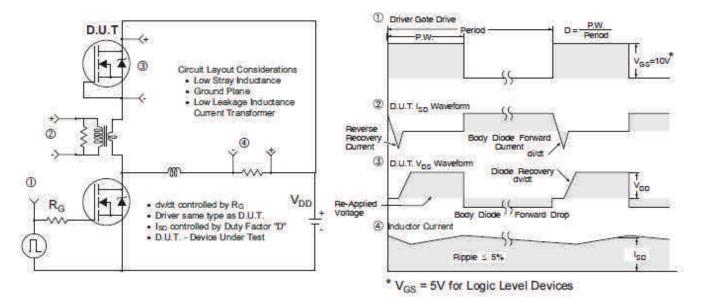


Fig 18. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET[®] Power MOSFETs

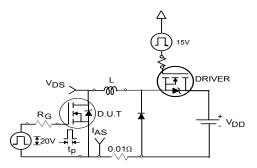


Fig 19a. Unclamped Inductive Test Circuit

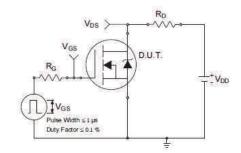


Fig 20a. Switching Time Test Circuit

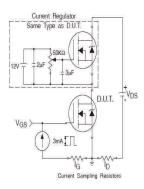


Fig 21a. Gate Charge Test Circuit

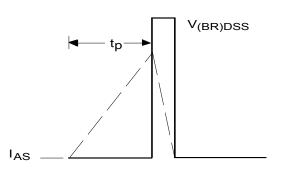


Fig 19b. Unclamped Inductive Waveforms

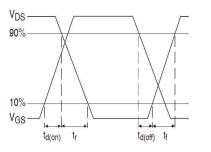
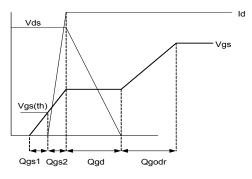
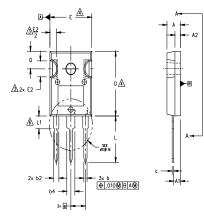
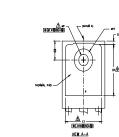
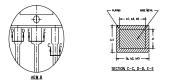


Fig 20b. Switching Time Waveforms


Fig 21b. Gate Charge Waveform



TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

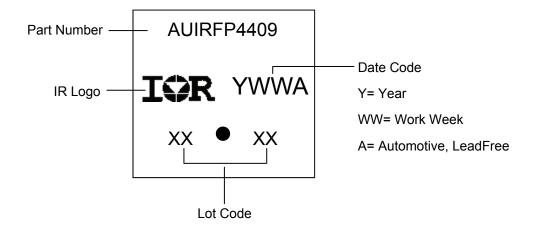
NOTES:

- 1, DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- DIMENSIONS ARE SHOWN IN INCHES.
- CONTOUR OF SLOT OPTIONAL. <u>/</u>3
- 4 DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127)
- PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.
- LEAD FINISH UNCONTROLLED IN L1.
- OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 ' TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

	DIMENSIONS				
SYMBOL	. INCHES MILLIMETE			ETERS	1
	Min.	MAX.	Min.	MAX.	NOTES
A	.183	.209	4.65	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1.40	
b1	.039	.053	0.99	1.35	
b2	.065	.094	1.65	2.39	
b3	.065	.092	1.65	2.34	
b4	.102	.135	2.59	3.43	
b5	.102	.133	2.59	3.38	
с	.015	.035	0.38	0.89	
c1	.015	.033	0.38	0.84	
D	.776	.815	19.71	20.70	4
D1	.515	-	13.08	-	5
D2	.020	.053	0.51	1.35	
E	.602	.625	15.29	15.87	4
E1	.530	-	13.46	-	
E2	.178	.216	4.52	5.49	
e	.215	.215 BSC		BSC	1
Øk	.0	10	0.	25	1
L	.559	.634	14.20	16.10	1
L1	.146	.169	3.71	4.29	
øР	.140	.144	3.56	3.66	
øP1	-	.291	-	7.39	
Q	.209	.224	5.31	5,69	
S	.217	BSC	5.51	BSC	
			1		

LEAD ASSIGNMENTS

<u>HEXFET</u> 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN


IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

DIODES 1.- ANODE/OPEN

2.- CATHODE 3.- ANODE

TO-247AC Part Marking Information

TO-247AC package is not recommended for Surface Mount Application.

Qualification Information

			Automotive (per AEC-Q101)				
Qualification	Level	Infineon's Indu	Comments: This part number(s) passed Automotive qualification Infineon's Industrial and Consumer qualification level is granted by ex tension of the higher Automotive level.				
Moisture Ser	nsitivity Level	TO-247AC	N/A				
	Machine Model		Class M4 (+/- 500V) [†]				
			AEC-Q101-002				
500	Human Body Model		Class H2 (+/- 4000V) [†]				
ESD			AEC-Q101-001				
	Charged Device Model	Class C5 (+/- 2000) [†]					
		AEC-Q101-005					
RoHS Compl	liant	Yes					

+ Highest passing voltage.

Revision History

Date	Comments			
9/21/2017	Updated datasheet with corporate template			
9/21/2017	 Corrected typo error on package outline and part marking on page 7. 			

Published by

Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7