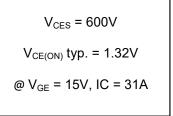
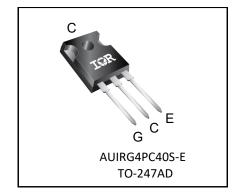

Insulated Gate Bipolar Transistor


Features


- Standard: Optimized for minimum saturation voltage and low operating frequencies (< 1kHz)
- Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3
- Industry standard TO-247AD package
- Lead-Free
- Automotive Qualified*

Benefits

- Generation 4 IGBT's offer highest efficiency available
- IGBT's optimized for specified application conditions
- Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBT's

G	С	E
Gate	Collector	Emitter

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form	Quantity	
AUIRG4PC40S-E	TO-247AD	Tube	25	AUIRG4PC40S-E

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{CES}	Collector-to-Emitter Voltage	600	V	
I _C @ T _C = 25°C	Continuous Collector Current	60		
I _C @ T _C = 100°C	Continuous Collector Current	31	۸	
I _{CM}	Pulse Collector Current ①	120	Α	
I _{LM}	Clamped Inductive Load Current ②	120		
$V_{\sf GE}$	Continuous Gate-to-Emitter Voltage	±20	V	
E _{ARV}	Reverse Voltage Avalanche Energy ③	15		
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	160	۱۸/	
P _D @ T _C = 100°C	Maximum Power Dissipation	65	W	
TJ	Operating Junction and	-55 to +150		
T _{STG}	Storage Temperature Range			
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	С	
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)		

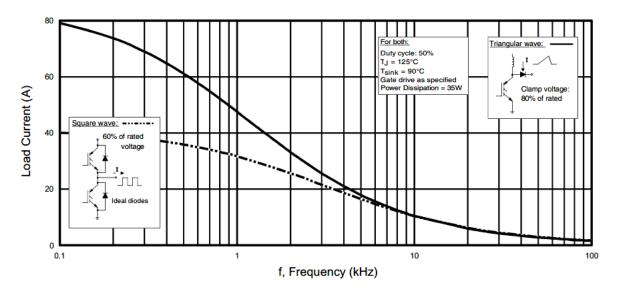
Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Thermal Resistance Junction-to-Case		0.77	
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink (flat, greased surface)	0.24		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (typical socket mount)		40	
Wt	Weight	6 (0.21)		g (oz)

^{*} Qualification standard can be found at www.infineon.com/

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage			_		$V_{GE} = 0V, I_{C} = 250\mu A$
$V_{(BR)ECS}$	Emitter-to-Collector Breakdown Voltage @	18	_		V	$V_{GE} = 0V, I_{C} = 1.0A$
$\Delta V_{(BR)CES}/\Delta T_{J}$	Temperature Coeff. of Breakdown Voltage		0.75	_	V/°C	$V_{GE} = 0V$, $I_C = 1mA$
		_	1.32	1.5		$I_{C} = 31A, V_{GE} = 15V, T_{J} = 25^{\circ}C$
$V_{CE(on)}$	Collector-to-Emitter Saturation Voltage	_	1.68	_	V	I_C = 60A, V_{GE} = 15V, See Fig. 2,5
	_	_	1.32	_		$I_C = 31A$, $V_{GE} = 15V$, $T_J = 150$ °C
$V_{GE(th)}$	Gate Threshold Voltage	3.0	_	6.0	V	$V_{CE} = V_{GE}$, $I_C = 250\mu A$
$\Delta V_{GE(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coeff.	_	-9.3		mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$
gfe	Forward Transconductance®	12	21	_	S	$V_{CE} = 100V, I_{C} = 31A$
		_		250		$V_{GE} = 0V, V_{CE} = 600V$
I _{CES}	Collector-to-Emitter Leakage Current	_		2.0		$V_{GE} = 0V, V_{CE} = 10V, T_{J} = 25^{\circ}C$
				1000		$V_{GE} = 0V, V_{CE} = 600V, T_{J} = 150^{\circ}C$
I _{GES}	Gate-to-Emitter Leakage Current			±100	nA	V_{GE} = ±20V


Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max	Units	Conditions	
Q_g	Total Gate Charge (turn-on)	_	100	150		I _C = 31A	
Q_{ge}	Gate-to-Emitter Charge (turn-on)	_	14	21	nC	V _{GE} = 15V See Fig.8	
Q_{gc}	Gate-to-Collector Charge (turn-on)	_	34	51		V _{CC} = 400V	
t _{d(on)}	Turn-On delay time		22	_			
t _r	Rise time	_	18			$I_C = 31A$, $V_{CC} = 480V$, $V_{GE} = 15V$	
$t_{d(off)}$	Turn-Off delay time		650	980	ns	$R_G = 10\Omega, T_J = 25^{\circ}C$	
t _f	Fall time		380	570		F	
Eon	Turn-On Switching Loss	_	0.45	_		Energy losses include "tail"	
E _{off}	Turn-Off Switching Loss	_	6.5		mJ	See Fig. 10, 11, 13, 14	
E _{ts}	Total Switching Loss	_	6.95	9.9		-	
t _{d(on)}	Turn-On delay time		23	_		$I_C = 31A$, $V_{CC} = 480V$, $V_{GE} = 15V$	
t _r	Rise time	_	21	_		$R_G = 10\Omega, T_J = 150^{\circ}C$	
$t_{d(off)}$	Turn-Off delay time	_	1000		ns	Energy lesses include "tail"	
t _f	Fall time	_	940		1	Energy losses include "tail"	
E _{ts}	Total Switching Loss		12	_	mJ	See Fig. 13, 14	
L _E	Internal Emitter Inductance	T —	13	_	nΗ	Measured 5mm from package	
C _{ies}	Input Capacitance	_	2200	_		V _{GE} = 0V	
Coes	Output Capacitance		140	_	pF	V _{CC} = 30V See Fig. 7	
C _{res}	Reverse Transfer Capacitance	_	26	_		f = 1.0Mhz	

Notes

- \odot Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- $@~V_{CC}$ = 80%(V_{CES}), V_{GE} = 20V, L = 10 $\mu H,~R_G$ = 10 $\Omega,$ (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- ④ Pulse width $\leq 80\mu s$; duty factor $\leq 0.1\%$.
- S Pulse width 5.0µs, single shot.

 $\label{eq:Fig.1} \textbf{Fig. 1} \mbox{ - Typical Load Current vs. Frequency} \\ \mbox{(For square wave, $I=I_{RMS}$ of fundamental; for triangular wave, $I=I_{PK}$)} \\$

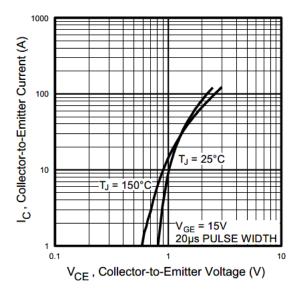


Fig. 2 - Typical Output Characteristics

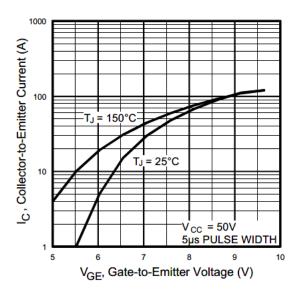
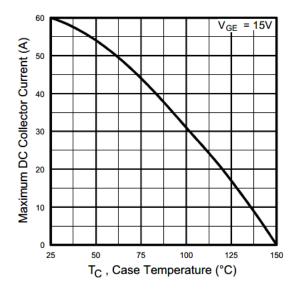
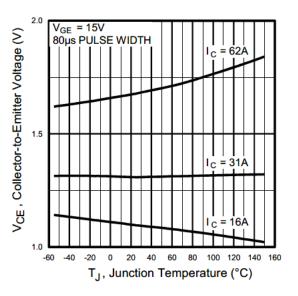




Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature

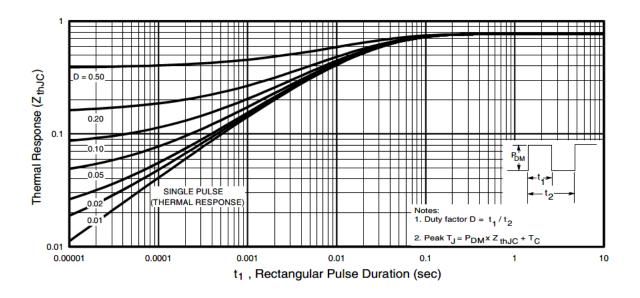
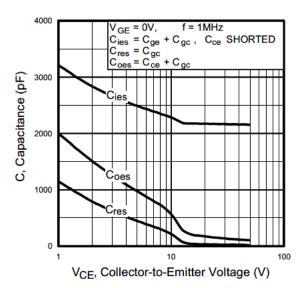
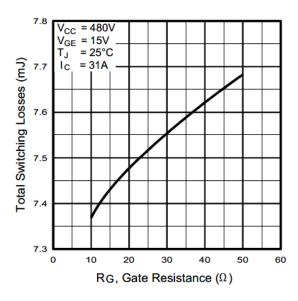
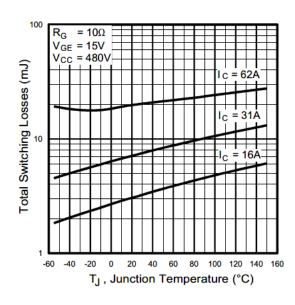




Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case


Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

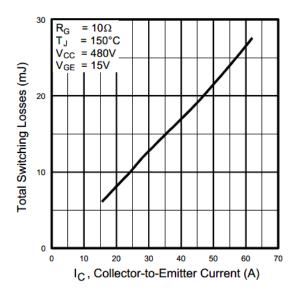

Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 10 - Typical Switching Losses vs. Junction Temperature

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

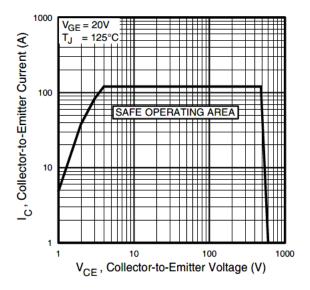
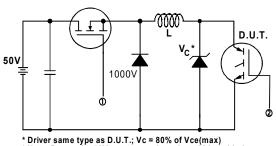



Fig. 12 - Turn-Off SOA

- * Driver same type as D.U.T.; Vc = 80% of Vce(max)

 * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated ld.
 - Fig. 13a Clamped Inductive Load Test Circuit

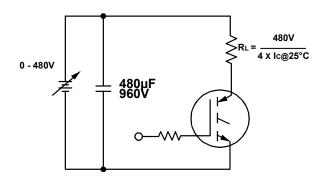
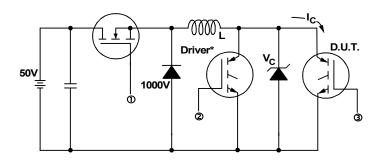



Fig. 13b - Pulsed Collector Current Test Circuit

* Driver same type as D.U.T., VC = 480V

Fig. 14a - Switching Loss Test Circuit

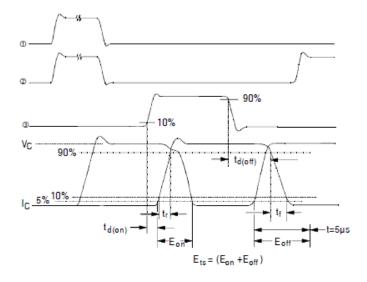
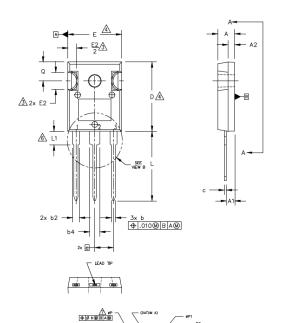
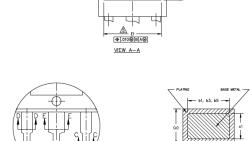




Fig. 14b - Switching Loss Waveforms

TO-247AD Package Outline Dimensions are shown in millimeters (inches)

NOTES:

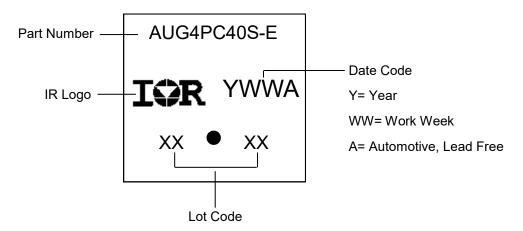
DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.

DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.


LEAD FINISH UNCONTROLLED IN L1.

ØP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 'TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AD.

	DIMENSIONS					
SYMBOL	INC	HES	MILLIM	MILLIMETERS		
	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	.190	.203	4.83	5.13		
A1	.087	.102	2.21	2.59		
A2	.072	.084	1.83	2.13		LEAD ASSIGNMENTS
b	.041	.051	1.04	1.30		ELTIS TIOSISTIMENTO
b1	.041	.050	1.04	1.28		<u>HEXFET</u>
b2	.065	.094	1.65	2.39		1 GATE
b3	.065	.092	1.65	2.34		2 DRAIN
b4	.102	.135	2.59	3.43		3 SOURCE 4 DRAIN
b5	.102	.133	2.59	3.38		
С	.017	.035	0.44	0.88		IGBTs, CoPACK
c1	.017	.034	0.44	0.84		1.— GATE
D	.776	.795	19.71	20.20	4	2 COLLECTOR
D1	.515	_	13.08	_	5	3 EMITTER
D2	.020	.053	0.51	1.35		4 COLLECTOR
E	.604	.625	15.35	15.87	4	
E1	.530	_	13.46	_		DIODES
E2	.178	.216	4.52	5.49		1 ANODE/OPEN
е	.215	BSC	5.46	BSC		2.— CATHODE 3.— ANODE
øk	.0	10	0.:	25		
L	.791	.823	20.10	20.90		
L1	.146	.169	3.71	4.29		
øΡ	.140	.144	3.56	3.66		
øP1	_	.291	_	7.39		
Q	.209	.224	5.31	5.69]	
S	.217	BSC	5.51	BSC		
			1		I	l .

TO-247AD Part Marking Information

TO-247AD package is not recommended for Surface Mount Application.

Qualification Information[†]

		Automotive					
		(per AEC-Q101) ^{††}					
		Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.					
Moisture	e Sensitivity Level	TO-247AD	-247AD N/A				
		Class H1C (+/- 2000V)					
	Human Body Model	AEC-Q101-001					
ESD		Class C5 (+/- 2000V)					
	Charged Device Model	AEC-Q101-005					
RoHS Compliant		Yes					

- † Qualification standards can be found at International Rectifier's web site: www.infineon.com
- †† Exceptions to AEC-Q101 requirements are noted in the qualification report.

Revision History

Date	Comments			
08/12/2020	Updated datasheet with corporate template.			
00/12/2020	Update the Dimensions table and package outline drawing on page 8			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

 748152A
 APT20GT60BRDQ1G
 APT50GT60BRG
 NGTB10N60FG
 STGFW20V60DF
 APT30GP60BG
 APT45GR65B2DU30

 GT50JR22(STA1ES)
 TIG058E8-TL-H
 IGW40N120H3FKSA1
 VS-CPV364M4KPBF
 NGTB25N120FL2WAG
 NGTG40N120FL2WG

 RJH60F3DPQ-A0#T0
 APT40GR120B2SCD10
 APT15GT120BRG
 APT20GT60BRG
 NGTB75N65FL2WAG
 NGTG15N120FL2WG

 IXA30RG1200DHGLB
 IXA40RG1200DHGLB
 APT70GR65B2DU40
 NTE3320
 QP12W05S-37A
 IHFW40N65R5SXKSA1
 APT70GR120J

 APT35GP120JDQ2
 XD15H120CX1
 XD25H120CX0
 XP15PJS120CL1B1
 IGW30N60H3FKSA1
 STGWA8M120DF3
 IGW08T120FKSA1

 IGW75N60H3FKSA1
 FGH60N60SMD_F085
 FGH75T65UPD
 STGWA15H120F2
 IKA10N60TXKSA1
 IHW20N120R5XKSA1

 RJH60D2DPP-M0#T2
 IKP20N60TXKSA1
 IHW20N65R5XKSA1
 APT70GR120JD60
 AOD5B60D
 APT70GR120L
 STGWT60H65FB

 STGWT60H65DFB
 STGWT40V60DF
 STGB10NB37LZT4
 STGWT60H65DFB
 APT70GR120L
 STGWT60H65FB