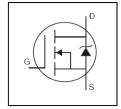
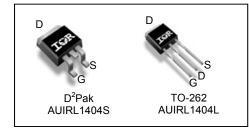


AUTOMOTIVE GRADE

AUIRL1404S AUIRL1404L


Features

- Advanced Planar Technology
- Logic Level Gate Drive
- Low On-Resistance
- Dynamic dV/dT Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *


Description

Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

V _{DSS}	40V
R _{DS(on)} max.	4.0mΩ
I _D	160A®

G	D	S
Gate	Drain	Source

Bass nort number	Dookogo Typo	Standard Pack	,	Orderable Part Number
Base part number	part number		Quantity	Orderable Part Number
AUIRL1404L	TO-262	Tube	50	AUIRL1404L
ALUDI 4404C	D ² Dela	Tube	50	AUIRL1404S
AUIRL1404S	4S D²-Pak	Tape and Reel Left	800	AUIRL1404STRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C Continuous Drain Current, V _{GS} @ 10V		160⑥	
© @ T _C = 100°C Continuous Drain Current, V _{GS} @ 10V		110©	Α
DM	Pulsed Drain Current ①	640	
P _D @T _A = 25°C	Maximum Power Dissipation	3.8	\A/
P _D @T _C = 25°C	Maximum Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS} Gate-to-Source Voltage		± 20	V
= _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	520	mJ
AR	Avalanche Current ①	95	А
= AR	Repetitive Avalanche Energy ①	20	mJ
dv/dt Peak Diode Recovery 3		5.0	V/ns
Γ _J	Operating Junction and	-55 to + 175	
T_{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Thermal Resistance							
Symbol	Parameter	Тур.	Max.	Units			
$R_{\theta JC}$	Junction-to-Case		0.75				
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W			
Rela	Junction-to-Ambient (PCB Mount), D2 PakS		40				

HEXFET® is a registered trademark of Infineon.

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.038	_	V/°C	Reference to 25°C, I _D = 1mA
				4.0		V _{GS} = 10V, I _D = 95A ④
$R_{DS(on)}$	Static Drain-to-Source On-Resistance			5.9	mΩ	V _{GS} = 4.3V, I _D = 40A ④
$V_{GS(th)}$	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	93			S	V _{DS} = 25V, I _D = 95A
	Drain to Course Lookens Current			20		$V_{DS} = 40V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 32V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	^	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200	nA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

-	• • • • • • • • • • • • • • • • • • • •	•	•		
Q_g	Total Gate Charge	 	140		I _D = 95A
Q_{gs}	Gate-to-Source Charge	 	48	nC	$V_{DS} = 32V$
Q_{gd}	Gate-to-Drain Charge	 	60		V _{GS} = 5.0V, See Fig. 6 ④
$t_{d(on)}$	Turn-On Delay Time	 18			$V_{DD} = 20V$
t _r	Rise Time	 270		20	I _D = 95A
$t_{d(off)}$	Turn-Off Delay Time	 38		ns	$R_G = 2.5\Omega, V_{GS} = 4.5V$
t _f	Fall Time	 130			$R_D = 0.25\Omega$ ④
L _D	Internal Drain Inductance	 4.5		nH	Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance	 7.5			from package and center of die contact
C_{iss}	Input Capacitance	 6600			$V_{GS} = 0V$
C_{oss}	Output Capacitance	 1700			V _{DS} = 25V
C_{rss}	Reverse Transfer Capacitance	 350		" Г	f = 1.0 MHz, See Fig. 5
Coss	Output Capacitance	 6700		pF	$V_{GS} = 0V, V_{DS} = 1.0V f = 1.0MHz$
Coss	Output Capacitance	 1500			$V_{GS} = 0V, V_{DS} = 32V f = 1.0MHz$
Coss eff.	Effective Output Capacitance	 1500			V_{GS} = 0V, V_{DS} = 0V to 32V

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			160®		MOSFET symbol
	(Body Diode) Pulsed Source Current				4 A	showing the integral reverse
I _{SM}	(Body Diode) ①			640		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C, I_S = 95A, V_{GS} = 0V $ ④
t _{rr}	Reverse Recovery Time		63	94	ns	$T_J = 25^{\circ}C$, $I_F = 95A$
Q_{rr}	Reverse Recovery Charge		170	250	nC	di/dt = 100A/µs ④
t_{on}	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is negligible (turn-on is dominated by $L_S + L_D$)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig.11)
- \odot Limited by $T_{Jmax,}$ starting T_J = 25°C, L = 0.35mH, R_G = 25 Ω , I_{AS} = 95A, V_{GS} =10V. (See fig.12)
- $\label{eq:local_special} \mbox{ } \m$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $^{\circ}$ C_{oss eff.} is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- © Calculated continuous current based on maximum allowable junction temperature; for recommended current-handing of the package refer to Design Tip # 93-4.
- This is applied to D² Pak, When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

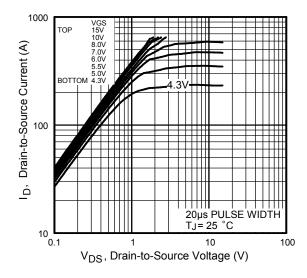


Fig. 1 Typical Output Characteristics

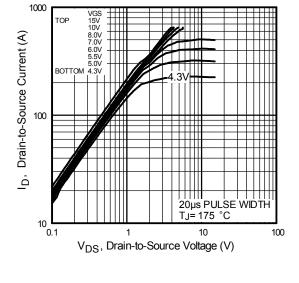


Fig. 2 Typical Output Characteristics

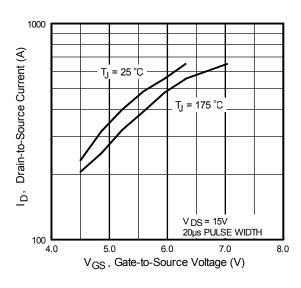


Fig. 3 Typical Transfer Characteristics

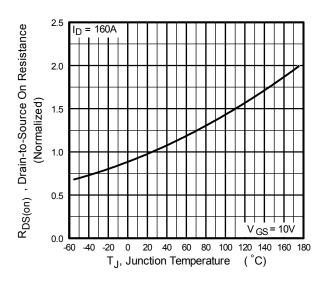


Fig. 4 Normalized On-Resistance vs. Temperature

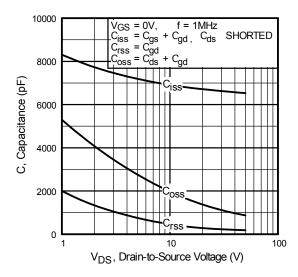


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

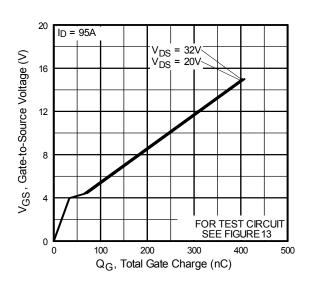


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

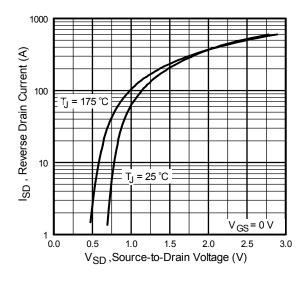


Fig. 7 Typical Source-to-Drain Diode

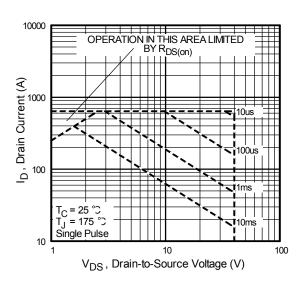
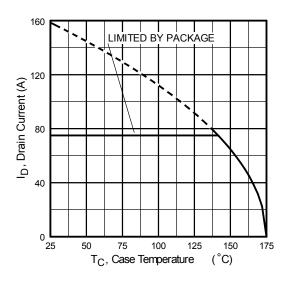



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

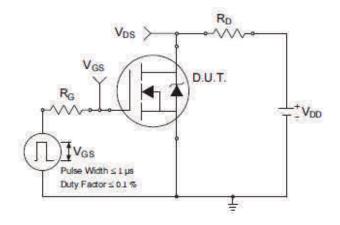


Fig 10a. Switching Time Test Circuit

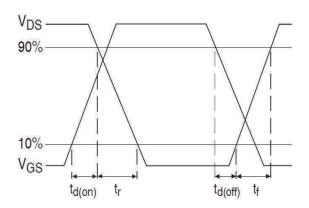


Fig 10b. Switching Time Waveforms

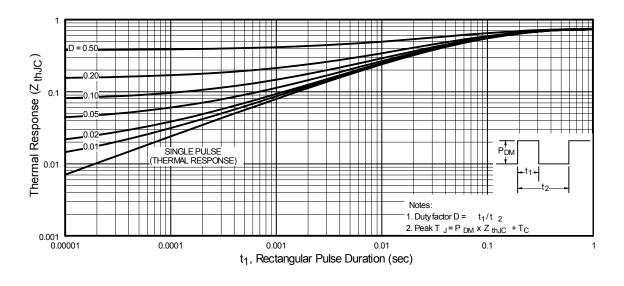


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

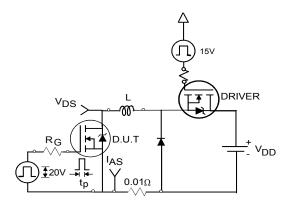


Fig 12a. Unclamped Inductive Test Circuit

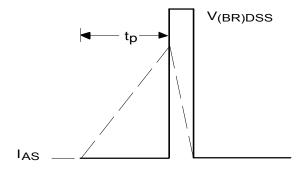


Fig 12b. Unclamped Inductive Waveforms

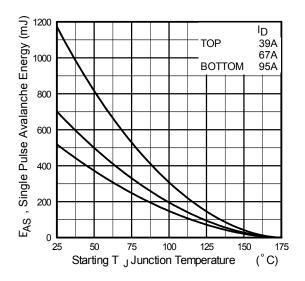


Fig 12c. Maximum Avalanche Energy vs. Drain Current

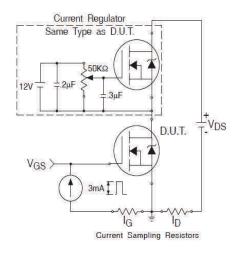


Fig 13a. Gate Charge Test Circuit

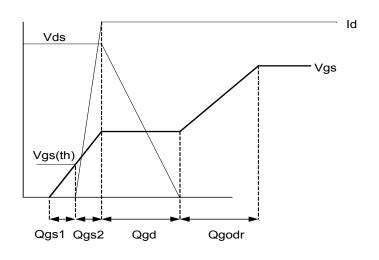


Fig 13b. Gate Charge Waveform

Peak Diode Recovery dv/dt Test Circuit

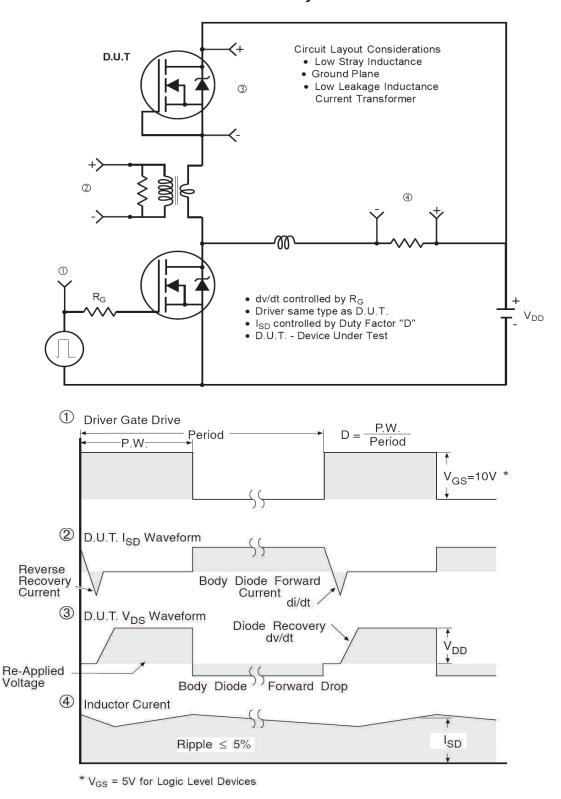
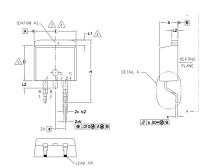
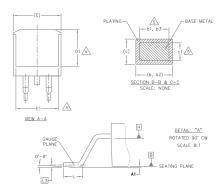




Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

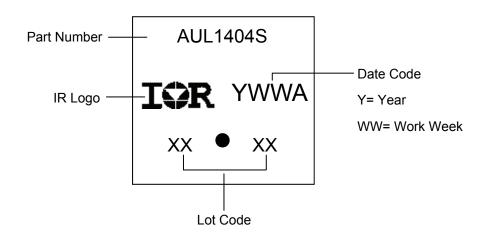
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H. 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S Y M		DIMEN	SIONS		N
В	MILLIM	ETERS	INC	HES	O T E S
0 L	MIN.	MAX.	MIN.	MAX.	S
А	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
Ь	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
с1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270	_	4
Е	9.65	10.67	.380	.420	3,4
E1	6.22	_	.245	_	4
е	2.54	BSC	.100	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	_	1.68	_	.066	4
L2	_	1.78	_	.070	
L3	0.25	BSC	.010	BSC	

LEAD ASSIGNMENTS

DIODES

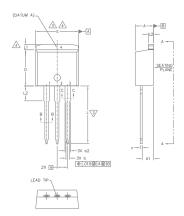
1.— ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.— CATHODE 3.— ANODE

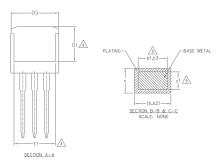

HEXFET

IGBTs, CoPACK

1.- GATE 2, 4.- DRAIN 3.- SOURCE

1.- GATE 2, 4.- COLLECTOR 3.- EMITTER


D²Pak (TO-263AB) Part Marking Information



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-262 Package Outline (Dimensions are shown in millimeters (inches)

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

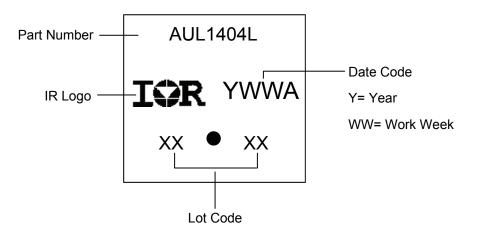
- 6. CONTROLLING DIMENSION: INCH.
- 7.- OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(max.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

LEAD ASSIGNMENTS

IGBTs, CoPACK

- 1.- GATE
 2.- COLLECTOR
 3.- EMITTER
 4.- COLLECTOR

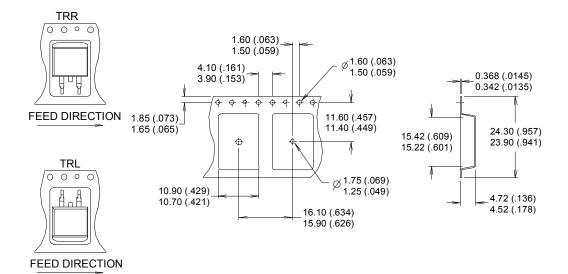
HEXFET

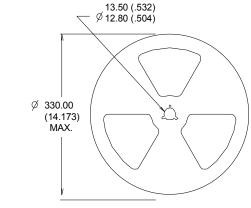

DIODES 1.- ANODE (TWO DIE) / OPEN (ONE DIE) 1.- GATE

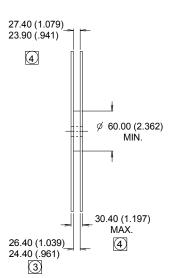
2.- DRAIN 3.- SOURCE 2, 4.- CATHODE 3.- ANODE

4.- DRAIN

S Y M		DIMENSIONS				
В	MILLIM	MILLIMETERS		INCHES		
0 L	MIN.	MAX.	MIN.	MAX.	O T E S	
А	4.06	4.83	.160	.190		
Α1	2.03	3.02	.080	.119		
b	0.51	0.99	.020	.039		
b1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
ь3	1.14	1.73	.045	.068	5	
С	0.38	0.74	.015	.029		
с1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	-	.270	_	4	
E	9.65	10.67	.380	.420	3,4	
E1	6.22	_	.245		4	
е	2.54	BSC	.100	BSC		
L	13.46	14.10	.530	.555		
L1	_	1.65	_	.065	4	
L2	3.56	3.71	.140	.146		


TO-262 Part Marking Information




Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. COMFORMS TO EIA-418.
- CONTROLLING DIMENSION: MILLIMETER.
- 🗷 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

	Automotivo					
		Automotive				
		(per AEC-Q101)				
Qualificat	Qualification Level		is part number(s) passed Automotive qualification. Infineon's			
		Industrial and C	Consumer qualification level is granted by extension of the higher			
		Automotive leve	el.			
Moisture Sensitivity Level		D ² -Pak	MSL1			
Moistare	Moisture Sensitivity Level		. IVIOL I			
	NA - deiro - NA - del		Class M4 (+/- 800V) [†]			
	Machine Model	AEC-Q101-002				
	Harris Dada Madal		Class H2 (+/- 4000V) [†]			
ESD	Human Body Model	AEC-Q101-001				
	Observed Davis a Madal	Class C5 (+/- 2000V) [†]				
	Charged Device Model		AEC-Q101-005			
RoHS Compliant		Yes				

[†] Highest passing voltage.

Revision History

Date	Comments
10/27/2015	Updated datasheet with corporate template
	Corrected ordering table on page 1.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237

2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T)

D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F

SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2

RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U

JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI