BAR81...

Silicon RF Switching Diode

- Designed for use in shunt configuration in high performance RF switches
- High shunt signal isolation
- Low shunt insertion loss
- Optimized for short - open transformation using $\lambda / 4$ lines
- Pb-free (RoHS compliant) package

BAR81W

Type	Package	Configuration	$\boldsymbol{L}_{\mathbf{s}}(\mathrm{nH})$	Marking
BAR81W	SOT343	single shunt-diode	0.15^{*}	BBs

* series inductance chip to ground

Maximum Ratings at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Diode reverse voltage	V_{R}	30	V
Forward current	I_{F}	100	mA
Total power dissipation	$P_{\text {tot }}$	100	mW
$T_{\mathrm{S}} \leq 138^{\circ} \mathrm{C}$			
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Operating temperature range	T_{op}	$-55 \ldots 125$	
Storage temperature	$T_{\text {stg }}$	$-55 \ldots 150$	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point $\left.{ }^{1}\right)$	$R_{\text {thJS }}$	≤ 120	K/W

[^0]BAR81...

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Reverse current $V_{\mathrm{R}}=20 \mathrm{~V}$	$I_{\text {R }}$	-	-	20	nA
Forward voltage $I_{F}=100 \mathrm{~mA}$	V_{F}	-	0.93	1	V

Diode capacitance$\begin{aligned} & V_{\mathrm{R}}=1 \mathrm{~V}, f=1 \mathrm{MHz} \\ & V_{\mathrm{R}}=3 \mathrm{~V}, f=1 \mathrm{MHz} \end{aligned}$	C_{T}				pF
		-	0.6	1	
		-	0.57	0.9	
Forward resistance $I_{\mathrm{F}}=5 \mathrm{~mA}, f=100 \mathrm{MHz}$	$r_{\text {f }}$	-	0.7	1	Ω
Charge carrier life time $\begin{aligned} & I_{\mathrm{F}}=10 \mathrm{~mA}, I_{\mathrm{R}}=6 \mathrm{~mA}, \text { measured at } I_{\mathrm{R}}=3 \mathrm{~mA}, \\ & R_{\mathrm{L}}=100 \Omega \end{aligned}$	τ_{rr}	-	80	-	ns
I-region width	W_{1}	-	3.5	-	$\mu \mathrm{m}$
Shunt Insertion loss1) $I_{\mathrm{F}}=10 \mathrm{~mA}, f=1.89 \mathrm{GHz}$	IL	-	30	-	dB
Shunt isolation ${ }^{1)}$ $V_{\mathrm{R}}=3 \mathrm{~V}, f=1.89 \mathrm{GHz}$	ISO	-	0.7	-	

Configuration of the shunt-diode

- A perfect ground is essential for optimum isolation
- The anode pins should be used as passage for RF

[^1]Diode capacitance $C_{T}=f\left(\mathrm{~V}_{\mathrm{R}}\right)$
$f=$ Parameter

Forward resistance $r_{f}=f\left(l_{F}\right)$
$f=100 \mathrm{MHz}$

Reverse parallel resistance $R_{\mathrm{P}}=f\left(V_{\mathrm{R}}\right)$ $f=$ Parameter

Forward current $I_{F}=f\left(V_{F}\right)$
$T_{\mathrm{A}}=$ Parameter

BAR81...

Forward current $I_{\mathrm{F}}=f\left(T_{\mathrm{S}}\right)$
BAR81W

Permissible Pulse Load

$I_{\text {Fmax }} / I_{\text {FDC }}=f\left(t_{\mathrm{p}}\right) \quad$ BAR81W

Permissible Puls Load $R_{\text {th } J S}=f\left(t_{\mathrm{p}}\right)$ BAR81W

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

BAR81...

Edition 2009-11-16

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for PIN Diodes category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
MA45471 MA4SPS502 APD2220-000 APD0810-000 MA4GP907 MA4L032-186 MA4L401-30 MA4P606-258 MA4P7435NM-1091T MA4PK2000 MA4PK2001 MA4PK2004 MADP-007167-12250T MADP-030025-13140P MA4SPS421 MA4PBL027 MA4P404-30 MA4AGFCP910 MA4P7101F-1072T MA4L022-30 MA47047-54 BAR 89-02LRH E6327 UM7108B UM9701 1SV308,L3F UM9301SM 5082-3077 GC4723-42 MA4L011-1088 MSW2001-200 SMP1321-000 M17X1008 UM4010SM UM6002B UM7201SM UM7006A UM7006B UM7108C GC4742-42 MADP-000015-000030 MGPN1503-C01A LXP1004-23-2 MPP4201-206 LXP1004-23-0 MPP4202-206 MPP4205-206 SMP1321-011LF MA4L021-1056 MSW2031-203 MLP7120-11

[^0]: ${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

[^1]: ${ }^{1}$ For more information please refer to Application Note 049.

