Silicon N-Channel MOSFET Triode

- For high-frequency stages up to 300 MHz preferably in FM applications
- Pb-free (RoHS compliant) package ${ }^{1)}$
- Qualified according AEC Q101

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration						Package
BF999	LBs	$1=G$	$2=\mathrm{D}$	$3=\mathrm{S}$	-	-	-	SOT23

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	20	V
Continuous drain current	I_{D}	30	mA
Gate-source peak current	$\pm I_{\text {GSM }}$	10	mA
Total power dissipation $\mathrm{T}_{\mathrm{S}} \leq 76^{\circ} \mathrm{C}$	$P_{\text {tot }}$	200	mW
Storage temperature	$T_{\text {stg }}$	$-55 \ldots 150$	${ }^{\circ} \mathrm{C}$
Channel temperature	T_{ch}	150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Channel - soldering point ${ }^{2)}$	$R_{\text {thchs }}$	≤ 370	K/W

[^0]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | min. | typ. | max. | |
| DC Characteristics | $V_{(B R) D S}$ | 20 | - | - | V |
| Drain-source breakdown voltage
 $I_{\mathrm{D}}=10 \mu \mathrm{~A},-V_{\mathrm{GS}}=4 \mathrm{~V}$ | $\pm V_{(\mathrm{BR}) \mathrm{GSS}}$ | 6.5 | - | 12 | |
| Gate-source breakdown voltage
 $\pm I_{\mathrm{GS}}=10 \mathrm{~mA}, V_{\mathrm{DS}}=0$ | $\pm I_{\mathrm{GSS}}$ | - | - | 50 | nA |
| Gate-source leakage current
 $\pm V_{\mathrm{GS}}=5 \mathrm{~V}, V_{\mathrm{DS}}=0$ | I_{DSS} | 5 | 10 | 16 | mA |
| Drain current
 $V_{\mathrm{DS}}=10 \mathrm{~V}, V_{\mathrm{GS}}=0$ | $-V_{\mathrm{GS}(\mathrm{p})}$ | - | 0.8 | 1.5 | V |
| Gate-source pinch-off voltage
 $V_{\mathrm{DS}}=10 \mathrm{~V}, I_{\mathrm{D}}=20 \mu \mathrm{~A}$ | | | | | |

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | min. | typ. | max. | |
| AC Characteristics | g_{fs} | 14 | 20 | - | mS |
| Forward transconductance
 $V_{\mathrm{DS}}=10 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA}$ | C_{gss} | - | 2.5 | - | pF |
| Gate input capacitance
 $V_{\mathrm{DS}}=10 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA}, f=10 \mathrm{MHz}$ | C_{dss} | - | 0.9 | - | pF |
| Output capacitance
 $V_{\mathrm{DS}}=10 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA}, f=10 \mathrm{MHz}$ | | | | | |
| Power gain
 $V_{\mathrm{DS}}=10 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA}, f=45 \mathrm{MHz}$ | G_{p} | - | 27 | - | dB |
| Noise figure
 $V_{\mathrm{DS}}=10 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA}, f=45 \mathrm{MHz}$ | F | - | 2.1 | - | dB |

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Gate transconductance $g_{\mathrm{fs}}=f\left(V_{\mathrm{GS}}\right)$

Output characteristics $/ D=f\left(V_{D S}\right)$

Drain current $I_{D}=\left(V_{G S}\right)$

Gate input capacitance $C_{\mathrm{gss}}=f\left(\mathrm{VGS}_{\mathrm{GS}}\right)$

Output capacitance $C_{\mathrm{dss}}=f\left(V_{\mathrm{DS}}\right)$

Package Outline

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Edition 2006-02-01
Published by Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF MOSFET Transistors category:
Click to view products by Infineon manufacturer:

Other Similar products are found below :
MRF492 ARF1511 ARF465BG BF 2030 E6814 BLF861A DU1215S DU28200M UF28100M DU2820S ARF463BP1G ARF465AG MRF426 ARF468AG ARF468BG MAPHST0045 DU2860U MRFE6VP5300NR1 BF2040E6814HTSA1 LET9060S MRF136Y BF999E6327HTSA1 SD2931-12MR BF998E6327HTSA1 AFT05MS006NT1 MRF171 MRF172 MRF174 QPD1020SR BF 1005S E6327 MRF134 MRF136 MRF137 MRF141G MRF151A MRF157 MRF158 MRF160 MRF166C MRF171A MRF173 MRF177 UF2840G TGF3021-SM ARF1510 ARF448BG ARF449AG ARF461AG ARF463AP1G ARF466BG ARF477FL

[^0]: ${ }^{1} \mathrm{~Pb}$-containing package may be available upon special request
 ${ }^{2}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

