NPN Silicon RF Transistor

- For high gain low noise amplifiers
- For oscillators up to 10 GHz
- Noise figure $F=1.1 \mathrm{~dB}$ at 1.8 GHz
outstanding $G_{\mathrm{ms}}=21 \mathrm{~dB}$ at 1.8 GHz
- Transition frequency $f_{\mathrm{T}}=25 \mathrm{GHz}$

- Gold metallization for high reliability
- SIEGET ® 25 GHz fT - Line
- Pb-free (RoHS compliant) package 1)
- Qualified according AEC Q101

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration					Package	
BFP420	AMs	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	$4=\mathrm{E}$	-	-	SOT343

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CEO }}$		V
$T_{\text {A }}>0^{\circ} \mathrm{C}$		4.5	
$T_{\mathrm{A}} \leq 0^{\circ} \mathrm{C}$		4.1	
Collector-emitter voltage	$V_{\text {CES }}$	15	
Collector-base voltage	$V_{\text {CBO }}$	15	
Emitter-base voltage	$V_{\text {EBO }}$	1.5	
Collector current	$I_{\text {C }}$	35	mA
Base current	I_{B}	3	
Total power dissipation ${ }^{2}$) $T_{S} \leq 107^{\circ} \mathrm{C}$	$P_{\text {tot }}$	160	mW
Junction temperature	T_{i}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature	$T_{\text {A }}$	-65 ... 150	
Storage temperature	$T_{\text {stg }}$	-65 ... 150	

[^0]
Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point 1)	$R_{\text {thJS }}$	≤ 260	K/W

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | min. | typ. | max. | |
| DC Characteristics | $V_{(B R) C E O}$ | 4.5 | 5 | - | V |
| Collector-emitter breakdown voltage
 $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$ | I_{CES} | - | - | 10 | $\mu \mathrm{~A}$ |
| Collector-emitter cutoff current
 $V_{\mathrm{CE}}=15 \mathrm{~V}, V_{\mathrm{BE}}=0$ | I_{CBO} | - | - | 100 | nA |
| Collector-base cutoff current
 $V_{\mathrm{CB}}=5 \mathrm{~V}, I_{\mathrm{E}}=0$ | I_{EBO} | - | - | 3 | $\mu \mathrm{~A}$ |
| $\mathrm{Emitter}-$ base cutoff current
 $V_{\mathrm{EB}}=0.5 \mathrm{~V}, I_{\mathrm{C}}=0$ | h_{FE} | 60 | 95 | 130 | - |
| DC current gain | | | | | |
| $I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=4 \mathrm{~V}$, pulse measured | | | | | |

${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

BFP420

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

AC Characteristics (verified by random sampling)

Transition frequency $I_{\mathrm{C}}=30 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, f=2 \mathrm{GHz}$	$f_{\text {T }}$	18	25	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ emitter grounded	$C_{\text {cb }}$	-	0.15	0.3	pF
Collector emitter capacitance $V_{\mathrm{CE}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0$ base grounded	$C_{c e}$	-	0.37	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0$ collector grounded	$C_{\text {eb }}$	-	0.55	-	
Noise figure $I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}$	F	-	1.1	-	dB
Power gain, maximum stable ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }} \\ & Z_{\mathrm{L}}=Z_{\text {Lopt }}, f=1.8 \mathrm{GHz} \end{aligned}$	G_{ms}	-	21	-	dB
Insertion power gain $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=20 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\left\|S_{21}\right\|^{2}$	14	17	-	
Third order intercept point at output ${ }^{2}$) $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=20 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega \end{aligned}$	$I P_{3}$	-	22	-	dBm
1dB Compression point at output $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$P_{-1 \mathrm{~dB}}$	-	12	-	

${ }^{1} G_{\mathrm{ms}}=\left|S_{21} / S_{12}\right|$
${ }^{2}$ IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

Simulation Data

For SPICE-model as well as for S-parameters including noise parameters refer to our internet website: www.infineon.com/rf.models. Please consult our website and download the latest version before actually starting your design.
The simulation data have been generated and verified up to 10 GHz using typical devices. The BFP420 nonlinear SPICE-model reflects the typical DC- and RF-device performance with high accuracy.

Total power dissipation $P_{\text {tot }}=f\left(T_{S}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Permissible Pulse Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$

Collector-base capacitance $C_{c b}=f\left(V_{C B}\right)$ $f=1 \mathrm{MHz}$

Transition frequency $f_{\mathrm{T}}=f\left(I_{\mathrm{C}}\right)$
$f=2 \mathrm{GHz}$
$V_{C E}=$ parameter in V

Power gain $G_{m a}, G_{m s}=f\left(I_{C}\right)$
$V_{C E}=2 V$
$f=$ parameter in GHz

Power gain $G_{m a}, G_{m s},\left|S_{21}\right|^{2}=f(f)$
$V_{C E}=2 \mathrm{~V}, I_{\mathrm{C}}=20 \mathrm{~mA}$

Power gain $G_{m a}, G_{m s}=f\left(V_{C E}\right)$
$I_{C}=20 \mathrm{~mA}$
$f=$ parameter in GHz

Noise figure $F=f\left(I_{C}\right)$
$V_{\text {CE }}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }}$

Noise figure $F=f(f)$
$V_{C E}=2 \mathrm{~V}, Z_{S}=Z_{\text {Sopt }}$

Noise figure $F=f\left(I_{C}\right)$
$V_{\mathrm{CE}}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}$

Source impedance for min.
noise figure vs. frequency

$$
V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=5 \mathrm{~mA} / 20 \mathrm{~mA}
$$

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Edition 2009-12-02
Published by Infineon Technologies AG
85579 Neubiberg, Germany
© Infineon Technologies AG 2009.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Bipolar Transistors category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
MAPRST0912-50 MCH4016-TL-H MMBT5551-G MRF10120 15GN01CA-TB-E PH1214-25M MAPRST0912-350 MMBTH10-TP BFP 640F H6327 BFR 360F H6765 MRF10031 NSVF4009SG4T1G BFP 182R E7764 BFP405H6740XTSA1 MRF10350 ASMA201 BFR360FH6765XTSA1 BFP410H6327XTSA1 BFP620FH7764XTSA1 BFP720ESDH6327XTSA1 BFP720FH6327XTSA1 BFR360L3E6765XTMA1 BFP420H6433XTMA1 BFP420H6740XTSA1 BFP420H6801XTSA1 MCH4015-TL-H BF888H6327XTSA1 MMBT2222A-G BFP196WH6327XTSA1 BFP405FH6327XTSA1 BFP640ESDH6327XTSA1 BFR193L3E6327XTMA1 BFS483H6327XTSA1 NSVF4020SG4T1G NSVF6003SB6T1G MRF10005 BFP420FH6327XTSA1 BFP740FESDH6327XTSA1 BFR181E6327HTSA1 BFR181WH6327XTSA1 BFR182E6327HTSA1 BFR193E6327HTSA1 BFP181E7764HTSA1 BFP183WH6327XTSA1 BFP720H6327XTSA1 BFR182WH6327XTSA1 BFU590GX MAPR-000912-500S00 BFR340FH6327XTSA1 STGWT30HP65FB

[^0]: ${ }^{1} \mathrm{~Pb}$-containing package may be available upon special request
 ${ }^{2} T_{\mathrm{S}}$ is measured on the collector lead at the soldering point to the pcb

