Low Noise Silicon Bipolar RF Transistor

- For high gain and low noise amplifiers
- Minimum noise figure $N F_{\text {min }}=1.1 \mathrm{~dB}$ at 1.8 GHz

Outstanding $G_{\mathrm{ms}}=21 \mathrm{~dB}$ at 1.8 GHz

- For oscillators up to 10 GHz
- Transition frequency $f_{T}=25 \mathrm{GHz}$

- Pb-free (RoHS compliant) and halogen-free package with visible leads
- Qualification report according to AEC-Q101 available

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration						Package
BFP420	AMs	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	$4=\mathrm{E}$	-	-	SOT343

Maximum Ratings at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}		V
$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.5	
$T_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		4.1	
Collector-emitter voltage	V_{CES}	15	
Collector-base voltage	V_{CBO}	15	
Emitter-base voltage	V_{EBO}	1.5	
Collector current	I_{C}	60	mA
Base current	I_{B}	9	
Total power dissipation ${ }^{1)}$	$P_{\text {tot }}$	210	mW
$T_{\mathrm{S}} \leq 98^{\circ} \mathrm{C}$			
Junction temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {Sta }}$	$-55 \ldots 150$	

${ }^{1} T_{\mathrm{S}}$ is measured on the emitter lead at the soldering point to the pcb

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1}$)	$R_{\text {thJS }}$	250	K/W
$1 \quad 2013-09-19$			

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics	$V_{(\mathrm{BR}) \mathrm{CEO}}$	4.5	5	-	V
Collector-emitter breakdown voltage $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$	I_{CES}	-	-	10	$\mu \mathrm{~A}$
Collector-emitter cutoff current $V_{\mathrm{CE}}=15 \mathrm{~V}, V_{\mathrm{BE}}=0$	I_{CBO}	-	-	100	nA
Collector-base cutoff current $V_{\mathrm{CB}}=5 \mathrm{~V}, I_{\mathrm{E}}=0$	I_{EBO}	-	-	3	$\mu \mathrm{~A}$
Emitter-base cutoff current $V_{\mathrm{EB}}=0.5 \mathrm{~V}, I_{\mathrm{C}}=0$	h_{FE}	60	95	130	-
DC current gain					
$I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=4 \mathrm{~V}$, pulse measured					

${ }^{1}$ For the definition of $R_{\text {thJs }}$ please refer to Application Note ANO77 (Thermal Resistance Calculation)

BFP420

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling)					
Transition frequency $I_{\mathrm{C}}=30 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, f=2 \mathrm{GHz}$	f_{\top}	18	25	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ emitter grounded	$C_{c b}$	-	0.15	0.3	pF
Collector emitter capacitance $V_{\mathrm{CE}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0$ base grounded	$C_{\text {ce }}$	-	0.37	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0$ collector grounded	$C_{\text {eb }}$	-	0.55	-	
Minimum noise figure $I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}$	$N F_{\text {min }}$	-	1.1	-	dB
Power gain, maximum stable ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }} \\ & Z_{\mathrm{L}}=Z_{\text {Lopt }}, f=1.8 \mathrm{GHz} \end{aligned}$	Gms	-	21	-	dB
Insertion power gain $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=20 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\left\|S_{21}\right\|^{2}$	14	17	-	
Third order intercept point at output²) $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=20 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega \end{aligned}$	IP3	-	22	-	dBm
1 dB compression point at output $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$P_{-1 \mathrm{~dB}}$	-	12	-	

[^0]Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Permissible Pulse Load $R_{\text {th } J S}=f\left(t_{\mathrm{p}}\right)$

Collector-base capacitance $C_{c b}=f\left(V_{C B}\right)$ $f=1 \mathrm{MHz}$

Transition frequency $f_{\mathrm{T}}=f\left(l_{\mathrm{C}}\right)$
$f=2 \mathrm{GHz}$
$V_{C E}=$ parameter in V

Power gain $G_{m a}, G_{m s}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=2 \mathrm{~V}$
$f=$ parameter in GHz

Power gain $G_{\mathrm{ma}}, G_{\mathrm{ms}},\left|S_{21}\right|^{2}=f(f)$
$V_{C E}=2 \mathrm{~V}, I_{C}=20 \mathrm{~mA}$

Power gain $G_{m a}, G_{m s}=f\left(V_{C E}\right)$
$I_{C}=20 \mathrm{~mA}$
$f=$ parameter in GHz

Noise figure $F=f\left(I_{C}\right)$
$V_{\text {CE }}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }}$

Noise figure $F=f(f)$
$V_{\text {CE }}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }}$

Noise figure $F=f\left(I_{C}\right)$
$V_{C E}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}$

Source impedance for min.
noise figure vs. frequency

$$
V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=5 \mathrm{~mA} / 20 \mathrm{~mA}
$$

SPICE GP ModeI

For the SPICE Gummel Poon (GP) model as well as for the S-parameters (including noise parameters) please refer to our internet website www.infineon.com/rf.models.
Please consult our website and download the latest versions before actually starting your design. You find the BFP420 SPICE GP model in the internet in MWO- and ADS-format, which you can import into these circuit simulation tools very quickly and conveniently. The model already contains the package parasitics and is ready to use for DC and high frequency simulations. The terminals of the model circuit correspond to the pin configuration of the device. The model parameters have been extracted and verified up to 10 GHz using typical devices. The BFP420 SPICE GP model reflects the typical DC- and RF-performance within the limitations which are given by the SPICE GP model itself. Besides the DC characteristics all S-parameters in magnitude and phase, as well as noise figure (including optimum source impedance, equivalent noise resistance and flicker noise) and intermodulation have been extracted.

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Edition 2009-12-02
Published by Infineon Technologies AG
85579 Neubiberg, Germany
© Infineon Technologies AG 2009.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Bipolar Transistors category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
MCH4016-TL-H MMBT5551-G PH3135-90S MRF587 15GN01CA-TB-E 2SA1257-5-TB-E MAPRST0912-350 MCH4014-TL-H MRF10031 MRF10350 MCH4015-TL-H BF888H6327XTSA1 MMBT2222A-G BFP196WH6327XTSA1 BFP405FH6327XTSA1 BFP640ESDH6327XTSA1 BFR193L3E6327XTMA1 BFS483H6327XTSA1 BFU550WX BFU550XRR MRF10150 55GN01FA-TL-H NSVF4020SG4T1G NSVF6003SB6T1G MMBT5179 MRF10005 MRF1150MB BFP420FH6327XTSA1 BFP740FESDH6327XTSA1 $\underline{\text { BFR181E6327HTSA1 BFR181WH6327XTSA1 BFR182E6327HTSA1 BFR193E6327HTSA1 BF776H6327XTSA1 BFP181E7764HTSA1 }}$ BFP183WH6327XTSA1 BFP720H6327XTSA1 BFR182WH6327XTSA1 BFR380FH6327XTSA1 BFU590GX BFR340FH6327XTSA1 STGWT30HP65FB NE68939-T1-A NSVF3007SG3T1G BFR 380F H6327 BFS20.215 BFP 650F H6327 BFP 420 H6740 BFP640FH6327XTSA1 BFQ790H6327XTSA1

[^0]: ${ }^{1} G_{m s}=\left|S_{21} / S_{12}\right|$
 ${ }^{2}$ IP3 value depends on termination of all intermodulation frequency components.
 Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

