NPN Silicon RF Transistor

- For broadband amplifiers up to 1 GHz at collector currents from 1 mA to 20 mA
- BFS17S: For orientation in reel see package information below
- Pb-free (RoHS compliant) package

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration					Package	
BFS17S	MCs	$1=\mathrm{B} 1$	$2=\mathrm{E} 1$	$3=\mathrm{C} 2$	$4=\mathrm{B} 2$	$5=\mathrm{E} 2$	$6=\mathrm{C} 1$	SOT363

Maximum Ratings at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CEO }}$	15	V
Collector-base voltage	$V_{\text {CBO }}$	25	
Emitter-base voltage	$V_{\text {EBO }}$	2.5	
Collector current	I_{C}	25	mA
Peak collector current, $f=10 \mathrm{MHz}$	$I_{\text {CM }}$	50	
Total power dissipation ${ }^{1)}$ $T_{\mathrm{S}} \leq 93^{\circ} \mathrm{C}$	$P_{\text {tot }}$	280	mW
Junction temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature	$T_{\text {A }}$	-65 ... 150	
Storage temperature	$T_{\text {Sta }}$	-65 ... 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{2}$)	$R_{\text {thJS }}$	≤ 240	K/W

[^0]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage $I_{C}=1 \mathrm{~mA}, I_{B}=0$	$V_{(B R) C E O}$	15	-	-	V
Collector-base cutoff current $\begin{aligned} & V_{\mathrm{CB}}=10 \mathrm{~V}, I_{\mathrm{E}}=0 \\ & V_{\mathrm{CB}}=25 \mathrm{~V}, I_{\mathrm{E}}=0 \end{aligned}$	$I_{\text {CBO }}$	-	-	$\begin{gathered} 0.05 \\ 10 \end{gathered}$	$\mu \mathrm{A}$
Emitter-base cutoff current $V_{\mathrm{EB}}=2.5 \mathrm{~V}, I_{\mathrm{C}}=0$	IEBO	-	-	100	
DC current gain $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V}$, pulse measured $I_{C}=25 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V}$, pulse measured	$h_{\text {FE }}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	70	150	-
Collector-emitter saturation voltage $I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B}}=1 \mathrm{~mA}$	$V_{\text {CEsat }}$	-	0.1	0.4	V

BFS17S

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling)					
Transition frequency $\begin{aligned} & I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=200 \mathrm{MHz} \\ & I_{\mathrm{C}}=25 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=200 \mathrm{MHz} \end{aligned}$	f_{\top}	$\begin{gathered} 1 \\ 1.3 \end{gathered}$	$\begin{aligned} & 1.4 \\ & 2.5 \end{aligned}$		GHz
Collector-base capacitance $V_{\mathrm{CB}}=5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0$ emitter grounded	$C_{c b}$	-	0.55	0.8	pF
Collector emitter capacitance $V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ base grounded	$C_{\text {ce }}$	-	0.2	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0$ collector grounded	$C_{\text {eb }}$	-	0.9	1.45	
Minimum noise figure $\begin{aligned} & I_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=50 \Omega, \\ & f=800 \mathrm{MHz} \end{aligned}$	$N F_{\text {min }}$	-	3	5	dB
Transducer gain $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \\ & f=500 \mathrm{MHz} \end{aligned}$	$\left\|S_{21 \mathrm{e}}\right\|^{2}$	-	14	-	dB
Third order intercept point at output $\begin{aligned} & V_{\mathrm{CE}}=5 \mathrm{~V}, I_{\mathrm{C}}=20 \mathrm{~mA}, f=800 \mathrm{MHz} \\ & Z_{\mathrm{S}}=Z_{\text {Sopt }}, Z_{\mathrm{L}}=Z_{\text {Lopt }} \end{aligned}$	$I P_{3}$	-	22.5	-	dBm
1dB compression point $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \\ & f=800 \mathrm{MHz} \end{aligned}$	$P_{-1 \mathrm{~dB}}$	-	11	-	-

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Permissible Pulse Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$

Collector-base capacitance $C_{\mathrm{Cb}}=f\left(V_{\mathrm{CB}}\right)$
Emitter-base capacitance $C_{\text {eb }}=f\left(V_{\mathrm{EB}}\right)$
$f=1 \mathrm{MHz}$

Transition frequency $f_{\mathrm{T}}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=$ parameter

Package Outline

Foot Print

Marking Layout (Example)

Small variations in positioning of
Date code, Type code and Manufacture are possible.

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.

Edition 2009-11-16

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Bipolar Transistors category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
MAPRST0912-50 MCH4016-TL-H MMBT5551-G MRF10120 15GN01CA-TB-E PH1214-25M MAPRST0912-350 MMBTH10-TP BFP 640F H6327 BFR 360F H6765 MRF10031 NSVF4009SG4T1G BFP 182R E7764 BFP405H6740XTSA1 MRF10350 ASMA201 BFR360FH6765XTSA1 BFP410H6327XTSA1 BFP620FH7764XTSA1 BFP720ESDH6327XTSA1 BFP720FH6327XTSA1 BFR360L3E6765XTMA1 BFP420H6433XTMA1 BFP420H6740XTSA1 BFP420H6801XTSA1 MCH4015-TL-H BF888H6327XTSA1 MMBT2222A-G BFP196WH6327XTSA1 BFP405FH6327XTSA1 BFP640ESDH6327XTSA1 BFR193L3E6327XTMA1 BFS483H6327XTSA1 NSVF4020SG4T1G NSVF6003SB6T1G MRF10005 BFP420FH6327XTSA1 BFP740FESDH6327XTSA1 BFR181E6327HTSA1 BFR181WH6327XTSA1 BFR182E6327HTSA1 BFR193E6327HTSA1 BFP181E7764HTSA1 BFP183WH6327XTSA1 BFP720H6327XTSA1 BFR182WH6327XTSA1 BFU590GX MAPR-000912-500S00 BFR340FH6327XTSA1 STGWT30HP65FB

[^0]: ${ }^{1} T_{\mathrm{S}}$ is measured on the collector lead at the soldering point to the pcb
 ${ }^{2}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note AN077 (Thermal Resistance Calculation)

