NPN Silicon RF Transistor

- For broadband amplifiers up to 1 GHz at collector currents from 1 mA to 20 mA
- BFS17S: For orientation in reel see package information below
- Pb-free (RoHS compliant) package

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration					Package	
BFS17S	MCs	$1=\mathrm{B} 1$	$2=\mathrm{E} 1$	$3=\mathrm{C} 2$	$4=\mathrm{B} 2$	$5=\mathrm{E} 2$	$6=\mathrm{C} 1$	SOT363

Maximum Ratings at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CEO }}$	15	V
Collector-base voltage	$V_{\text {CBO }}$	25	
Emitter-base voltage	$V_{\text {EBO }}$	2.5	
Collector current	I_{C}	25	mA
Peak collector current, $f=10 \mathrm{MHz}$	$I_{\text {CM }}$	50	
Total power dissipation ${ }^{1)}$ $T_{\mathrm{S}} \leq 93^{\circ} \mathrm{C}$	$P_{\text {tot }}$	280	mW
Junction temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature	$T_{\text {A }}$	-65 ... 150	
Storage temperature	$T_{\text {Sta }}$	-65 ... 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{2}$)	$R_{\text {thJS }}$	≤ 240	K/W

[^0]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage $I_{C}=1 \mathrm{~mA}, I_{B}=0$	$V_{(B R) C E O}$	15	-	-	V
Collector-base cutoff current $\begin{aligned} & V_{\mathrm{CB}}=10 \mathrm{~V}, I_{\mathrm{E}}=0 \\ & V_{\mathrm{CB}}=25 \mathrm{~V}, I_{\mathrm{E}}=0 \end{aligned}$	$I_{\text {CBO }}$	-	-	$\begin{gathered} 0.05 \\ 10 \end{gathered}$	$\mu \mathrm{A}$
Emitter-base cutoff current $V_{\mathrm{EB}}=2.5 \mathrm{~V}, I_{\mathrm{C}}=0$	IEBO	-	-	100	
DC current gain $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V}$, pulse measured $I_{C}=25 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V}$, pulse measured	$h_{\text {FE }}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	70	150	-
Collector-emitter saturation voltage $I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B}}=1 \mathrm{~mA}$	$V_{\text {CEsat }}$	-	0.1	0.4	V

BFS17S

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling)					
Transition frequency $\begin{aligned} & I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=200 \mathrm{MHz} \\ & I_{\mathrm{C}}=25 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=200 \mathrm{MHz} \end{aligned}$	f_{\top}	$\begin{gathered} 1 \\ 1.3 \end{gathered}$	$\begin{aligned} & 1.4 \\ & 2.5 \end{aligned}$		GHz
Collector-base capacitance $V_{\mathrm{CB}}=5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0$ emitter grounded	$C_{c b}$	-	0.55	0.8	pF
Collector emitter capacitance $V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ base grounded	$C_{\text {ce }}$	-	0.2	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0$ collector grounded	$C_{\text {eb }}$	-	0.9	1.45	
Minimum noise figure $\begin{aligned} & I_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=50 \Omega, \\ & f=800 \mathrm{MHz} \end{aligned}$	$N F_{\text {min }}$	-	3	5	dB
Transducer gain $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \\ & f=500 \mathrm{MHz} \end{aligned}$	$\left\|S_{21 \mathrm{e}}\right\|^{2}$	-	14	-	dB
Third order intercept point at output $\begin{aligned} & V_{\mathrm{CE}}=5 \mathrm{~V}, I_{\mathrm{C}}=20 \mathrm{~mA}, f=800 \mathrm{MHz} \\ & Z_{\mathrm{S}}=Z_{\text {Sopt }}, Z_{\mathrm{L}}=Z_{\text {Lopt }} \end{aligned}$	$I P_{3}$	-	22.5	-	dBm
1dB compression point $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \\ & f=800 \mathrm{MHz} \end{aligned}$	$P_{-1 \mathrm{~dB}}$	-	11	-	-

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Permissible Pulse Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$

Collector-base capacitance $C_{\mathrm{Cb}}=f\left(V_{\mathrm{CB}}\right)$
Emitter-base capacitance $C_{\text {eb }}=f\left(V_{\mathrm{EB}}\right)$
$f=1 \mathrm{MHz}$

Transition frequency $f_{\mathrm{T}}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=$ parameter

Package Outline

Foot Print

Marking Layout (Example)

Small variations in positioning of
Date code, Type code and Manufacture are possible.

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.

Edition 2009-11-16

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Infineon manufacturer:

Other Similar products are found below :
619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B

[^0]: ${ }^{1} T_{\mathrm{S}}$ is measured on the collector lead at the soldering point to the pcb
 ${ }^{2}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note AN077 (Thermal Resistance Calculation)

