BGA416

RF Cascode Amplifier

Small Signal Discretes

Edition 2008-04-21

Published by Infineon Technologies AG, 81726 München, Germany
© Infineon Technologies AG 2008.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGA416, RF Cascode Amplifier

Revision History: 2008-04-21, Rev. 2.1

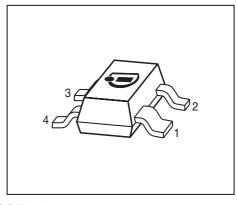
Previous Version: 2005-07-26

Document layout change
Electrical Characteristics slightly changed
Figures updated

Trademarks

SIEGET® is a registered trademark of Infineon Technologies AG.

Data Sheet 3 Rev. 2.1, 2008-04-21


RF Cascode Amplifier

1 RF Cascode Amplifier

Feature

- G_{MA} = 23 dB at 900 MHz
- Ultra high reverse isolation, 60 dB at 900 MHz
- Low noise figure, $F_{50\Omega}$ = 1.2 dB at 900 MHz
- On chip bias circuitry, 5.5 mA bias current at $V_{\rm CC}$ = 3 V
- Typical supply voltage: 2.5 to 5.0 V
- SIEGET[®]-25 technology
- · Pb-free (RoHS compliant) package

SOT143

Applications

- · Buffer amplifier
- LNAs
- Oscillator active devices

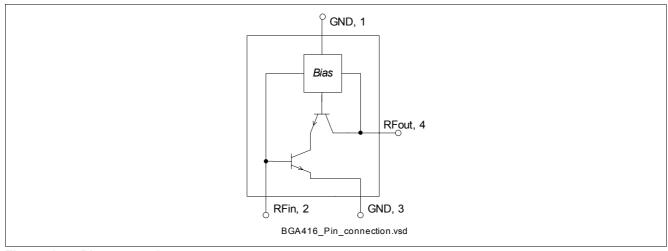


Figure 1 Pin connection

Description

BGA416 is a monolithic silicon cascode amplifier with high reverse isolation. A bias network is integrated for simplified biasing.

Туре	Package	Marking
BGA416	SOT143	C1s

Note: **ESD:** Electrostatic discharge sensitive device, observe handling precaution

Electrical Characteristics

Maximum Ratings

Table 1 Maximum ratings

Parameter	Symbol Limit Value		Unit		
Voltage at pin RFout	V_{OUT}	6	V		
Device current ¹⁾	I_{D}	20	mA		
Current into pin RFin	I_{in}	0.5	mA		
Input power	P_{in}	8	dBm		
Total power dissipation, $T_{\rm S}$ < 123°C ²⁾	P_{tot}	100	mW		
Junction temperature	T_{J}	150	°C		
Ambient temperature range	T_{A}	-65 150	°C		
Storage temperature range	T_{STG}	-65 150	°C		

¹⁾ Device current is equal to current into pin RFout

Note: All Voltages refer to GND-Node

Thermal resistance

Table 2 Thermal resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R_{thJS}	270	K/W

¹⁾ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

2 Electrical Characteristics

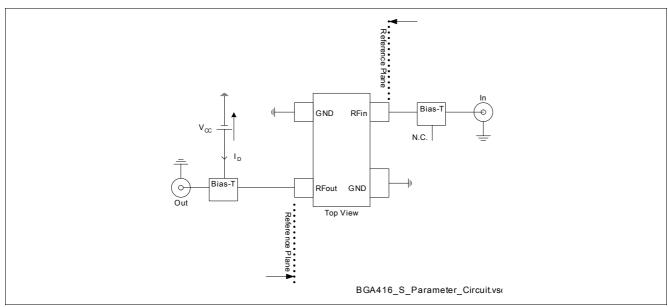
Electrical characteristics at $T_{\rm A}$ = 25 °C (measured in test circuit specified in **Figure 2**) $V_{\rm CC}$ = 3 V, unless otherwise specified

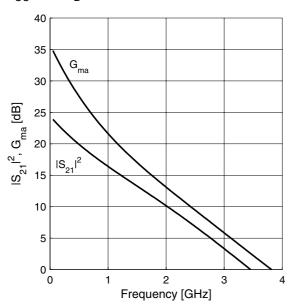
Table 3 Electrical Characteristics

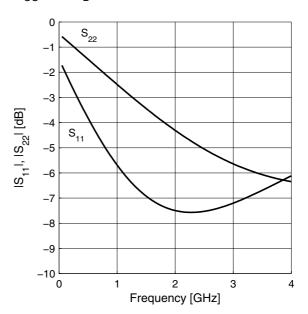
Parameter	Symbol	Values		Unit	Note /	
		Min.	Тур.	Max.		Test Condition
Maximum available power gain	G_{MA}		23		dB	f = 0.9 GHz
			14		dB	f = 1.8 GHz
Insertion power gain	$ S_{21} ^2$		17		dB	f = 0.9 GHz
			11		dB	f = 1.8 GHz
Reverse isolation	$ S_{12} $		60		dB	f = 0.9 GHz
			40		dB	f = 1.8 GHz
Noise figure ($Z_{\rm S}$ = 50 Ω)	$F_{50\Omega}$		1.2		dB	f = 0.9 GHz
			1.6		dB	f = 1.8 GHz
Output power at 1 dB gain compression ($Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω)	$P_{ ext{-1dB}}$		-3		dBm	f = 0.9 GHz
			-3		dBm	f = 1.8 GHz
Output third order intercept point $(Z_{\rm S} = Z_{\rm L} = 50 \ \Omega)$	OIP ₃		14		dBm	f = 0.9 GHz
			14		dBm	f = 1.8 GHz
Device current	I_{D}		5.5		mA	

²⁾ $T_{\rm S}$ is measured on the ground lead at the soldering point

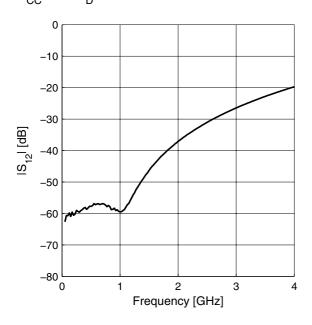
Electrical Characteristics




Figure 2 Test Circuit for Electrical Characteristics


Measured Parameters

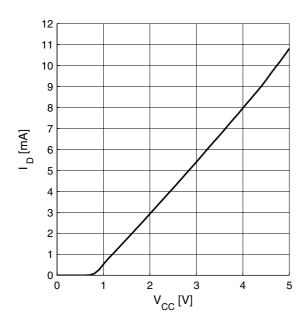
3 Measured Parameters


Power Gain
$$|S_{21}|^2$$
, $G_{ma} = f(f)$
 $V_{CC} = 3V$, $I_D = 5.5mA$

$$\begin{aligned} & \textbf{Matching} \ |S_{11}|, \ |S_{22}| = f(f) \\ & V_{CC} = 3V, \ I_D = 5.5 mA \end{aligned}$$

Reverse Isolation
$$|S_{12}| = f(f)$$

 $V_{CC} = 3V$, $I_D = 5.5mA$


Noise figure
$$F = f(f)$$

$$V_{CC} = 3V, I_{D} = 5.5 \text{mA}$$

Package Information

Device Current $I_D = f(V_{CC})$

4 Package Information

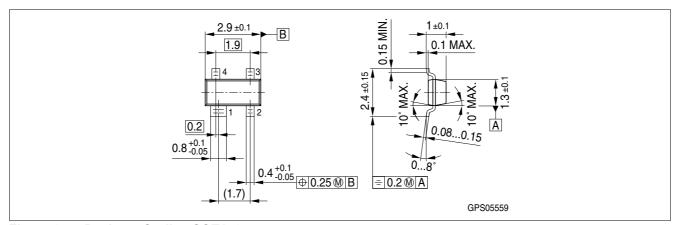


Figure 3 Package Outline SOT143

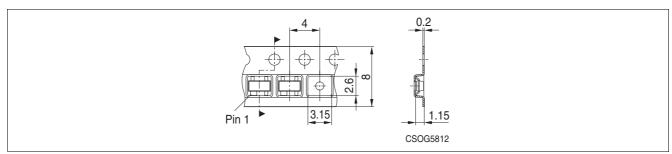


Figure 4 Tape for SOT143

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310