BGSA12GN10

Single Pole Dual Throw Antenna Tuning Switch

Features

- Designed for high linearity and high RF voltage tuning applications
- Multiple selectable switch configurations:

Each throw directly and independently controlled

- Low $R_{\text {ON }}$ resistance of 1.6Ω at each port in ON state
- Low $C_{\text {OFF }}$ capacitance of 120 fF at each port in OFF state
- High bidirectional RF operating voltage of 36 V in OFF state
- Low harmonic generation
- GPIO control interface
- Supply voltage range: 1.65 to 3.6 V
- No RF parameter change within supply voltage range

- Small form factor $1.1 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ (MSL1, $260^{\circ} \mathrm{C}$ per JEDEC J-STD-020)
- RoHS and WEEE compliant package

Potential Applications

- Impedance Tuning
- Antenna Tuning
- Inductance Tuning
- Tunable Filters

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Block Diagram

Single Pole Dual Throw Antenna Tuning Switch
Table of Contents

Table of Contents

Table of Contents 1
1 Features 2
2 Maximum Ratings 3
3 DC Characteristics 5
4 RF small signal parameter 7
5 RF large signal parameter 8
6 Logic Truth Table 10
7 Application Information 10
8 Package Information 11

Single Pole Dual Throw Antenna Tuning Switch

Features

1 Features

- Designed for high linearity and high RF voltage tuning applications
- Multiple selectable switch configurations: Each throw directly and independently controlled
- Low $R_{\text {ON }}$ resistance of 1.6Ω at each port in ON state
- Low Coff capacitance of 120 fF at each port in OFF state
- High bidirectional RF operating voltage of 36 V in OFF state
- Low harmonic generation

- GPIO control interface
- Supply voltage range: 1.65 to 3.6 V
- No RF parameter change within supply voltage range
- Small form factor $1.1 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ (MSL1, $260^{\circ} \mathrm{C}$ per JEDEC J-STD-020)
- RoHS and WEEE compliant package

Description

The BGSA12GN10 is a Single Pole Dual Throw (SPDT) RF antenna aperture switch optimized for low $C_{\text {OFF }}$ enabling applications up to 6.0 GHz . This single supply chip integrates on-chip CMOS logic driven by a simple, single-pin CMOS or TTL compatible control input signal. Unlike GaAs technology, the 0.1 dB compression point exceeds the switch maximum input power level, resulting in linear performance at all signal levels and external DC blocking capacitors at the RF ports are only required if DC voltage is applied externally. Due to its very high RF voltage ruggedness it is suited for switching any reactive devices such as inductors and capacitors in RF matching circuits without significant losses in quality factors.

Product Name	Marking	Package
BGSA12GN10	A2	TSNP-10-1/TSNP-10-2

Single Pole Dual Throw Antenna Tuning Switch
Maximum Ratings

2 Maximum Ratings

Table 1: Maximum Ratings, Table I at $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Frequency Range	f	0.1	-	-	GHz	1)
Supply voltage ${ }^{2)}$	$V_{D D}$	-0.5	-	3.6	V	Only for infrequent and short duration time periods
Storage temperature range	$T_{\text {STG }}$	-55	-	150	${ }^{\circ} \mathrm{C}$	-
RF input power	$P_{\text {RF_max }}$	-	-	39	dBm	Pulsed RF input power, duty cycle of 25% with T_period= $4620 \mu \mathrm{~s}$, ON-state, setup as of Fig. 1
RF voltage	$V_{\text {RF_max }}$	-	-	48	V	Short term peaks ($1 \mu \mathrm{~s}$, duty cycle 0.1\%), Isolation mode, test setup acc. Fig. 2 / Fig. 3 and exceeding typical linearity, $R_{\text {ON }}$ and CofF parameters
ESD capability, CDM ${ }^{3)}$	$V_{\text {ESD }{ }_{\text {com }}}$	-1.5	-	+1.5	kV	
ESD capability, HBM ${ }^{4)}$	$V_{\text {ESD }}{ }^{\text {HвM }}$	-1	-	+1	kV	
ESD capability, system level (RF port) ${ }^{5 \text {) }}$	$V_{\text {ESDANT }}$	-8	-	+8	kV	RF vs system GND, with 27 nH shunt inductor
Junction temperature	T_{J}	-	-	125	${ }^{\circ} \mathrm{C}$	-
Thermal resistance junction - soldering point	$R_{\text {thJs }}$	-	-	45	K/W	-
Maximum DC-voltage on RF-Ports and RFGround	$V_{\text {RFDC }}$	0	-	0	V	No DC voltages allowed on RFPorts
Control Voltage Levels	$V_{\text {Ctrlx }}$	-0.7	-	$\begin{aligned} & V_{\mathrm{DD}}+0.7 \\ & \text { (max. } \\ & 3.6 \text {) } \end{aligned}$	V	-
Moisture Sensitivity Level	MSL	-	1	-		-
${ }^{1)}$ Switch has a low-pass response. For higher frequencies, to be 0 V . ${ }^{2)}$ Note: Consider potential ripple voltages on top of v_{10}. I ${ }^{3)}$ Field-Induced Charged-Device Model ANSI/ESDA/JEDEC Potential for CDM ESD events occurs whenever there is 4) Human Body Model ANSI/ESDA/JEDEC JS-001 ($R=1,5$ ${ }^{5}$) IEC 61000-4-2 $(R=330 \Omega, C=150 \mathrm{pF})$, contact dischar	osses have to cluding RF ri JS-002. Sim metal-to-meta $\Omega, C=100 \mathrm{pF}$	be consid pe, V_{10} ates ch contact	ed for th st not ex ing/disch manufa	impact on ed the maxim rging events ring.	rmal he m ratin at occur	ng. The DC voltage at RF ports $V_{\text {RFDC }}$ has $: V_{C t r l}=V_{D C}+V_{\text {Ripple }} .$ production equipment and processes.

Warning: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

Single Pole Dual Throw Antenna Tuning Switch

Maximum Ratings

Figure 1: RF operating and Harmonics generation measurement configuration - RFx ON mode

Figure 2: RF operating voltage measurement configuration - OFF mode at RFC

Single Pole Dual Throw Antenna Tuning Switch
DC Characteristics

Figure 3: RF operating voltage measurement configuration - OFF mode at RFx

3 DC Characteristics

Table 2: DC Characteristics at $T_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Supply voltage	$V_{D D}$	1.65	2.8	3.6	V	-
Supply current	$I_{D D}$	-	80	150	$\mu \mathrm{~A}$	-
Control voltage low	$V_{\text {Ctrl,low }}$	0	-	0.45	V	-
Control voltage high	$V_{\text {Ctrl,high }}$	1.2	1.8	2.85	V	$V_{\text {Ctrl, high }}<V_{D D}$
Control current low	$I_{\text {Ctrl,low }}$	-1	0	1	$\mu \mathrm{~A}$	-
Control current high	$I_{\text {Ctrl, high }}$	-1	0	1	$\mu \mathrm{~A}$	$V_{\text {Ctrl,high }}<V_{D D}$
Ambient temperature	T_{A}	-40	25	85	${ }^{\circ} \mathrm{C}$	-
RF switching time	$t_{S T}$	2	5	7	$\mu \mathrm{~s}$	$P_{\text {IN }}=0 \mathrm{dBm}, Z_{0}=50 \Omega$, $T_{A}=-40{ }^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ $V_{D D}=1.65-3.6 \mathrm{~V}$ Refering Fig. 4 and Fig. 5
Startup time						

Single Pole Dual Throw Antenna Tuning Switch
DC Characteristics

Figure 4: Switching Time Definition

Figure 5: Timing of Control and RF signals for valid operation

Single Pole Dual Throw Antenna Tuning Switch

RF small signal parameter

4 RF small signal parameter

Table 3: RF small signal specifications

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Frequency range	f	0.1	-	6.0	GHz	-
Switch ON resistance	$R_{\text {ON }}$	-	1.6		Ω	RFx to RFC
Switch OFF capacitance	$C_{\text {OFF }}$	-	120		fF	RFx to RFC
Parasitic RF shunt capacitance	$C_{\text {SH,PAR }}$	-	42		fF	RFx to GND, extracted value for 2 GHz
Switch series inductance	$L_{\text {SER }}$	-	0.1		nH	
Insertion Loss ${ }^{(1,2,3,4,5)}$						
824-960 MHz	IL	-	0.25	0.35	dB	-
1710-1980 MHz		-	0.32	0.42	dB	-
1980-2170 MHz		-	0.33	0.42	dB	-
2170-2690 MHz		-	0.39	0.49	dB	-
Return Loss ${ }^{(1,2,3,4,5)}$						
All Ports @ 824-915 MHz	$R L$	27.9	32	38	dB	-
All Ports @ 1710-2170 MHz		22	25	30	dB	-
All Ports @ 2170-2690 MHz		20	23	27	dB	-
Isolation RFx to RFC ${ }^{(1,2,3,4,5)}$						
824-915 MHz	ISO	28.5	30	30	dB	-
1710-1980 MHz		22	23	24	dB	-
1980-2170 MHz		22	22	23	dB	-
2170-2690 MHz		19	20	21	dB	-
Isolation RFx to RFx ${ }^{(1,2,3,4,5)}$						
824-915 MHz	ISO	29.5	30	31	dB	-
1710-1980 MHz		22	23	24	dB	-
1980-2170 MHz		21	22	23	dB	-
2170-2690 MHz		19	20	21	dB	-

${ }^{1)}$ Terminating Port Impedance: $Z_{0}=50 \Omega^{2)}$ Input Power: $P_{I N}=-20 \mathrm{dBm}{ }^{3)}$ Temperature Range: $T_{A}=-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$, ${ }^{4)}$ Supply Voltage: $V_{D D}=1.65-3.6 V^{5)}$ On application board without any matching components

Single Pole Dual Throw Antenna Tuning Switch

RF large signal parameter

5 RF large signal parameter

Table 4: RF large signal specifications

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
RF operating voltage	$V_{\text {RF_peak }}$	-	-	36	V	
Harmonic Generation up to $\mathbf{1 2 . 7 5} \mathbf{G H z}^{(1,2,3)}$						
All RF Ports - Second Order Harmonics	$P_{H 2}$	-	105	-	dBC	$25 \mathrm{dBm}, 50 \Omega, f_{0}=786 \mathrm{MHz}$
All RF Ports - Third Order Harmonics	$P_{\text {н3 }}$	-	115	-	dBC	$25 \mathrm{dBm}, 50 \Omega, f_{0}=786 \mathrm{MHz}$
All RF Ports - Second Order Harmonics	$P_{\text {H2 }}$	-	93	-	dBC	$36 \mathrm{dBm}, 50 \Omega, f_{0}=824 \mathrm{MHz}$
All RF Ports - Third Order Harmonics	$P_{\text {H3 }}$	-	94	-	dBC	$33 \mathrm{dBm}, 50 \Omega, \mathrm{f}_{0}=824 \mathrm{MHz}$
All RF Ports	$P_{H X}$	105	-	-	dBc	$25 \mathrm{dBm}, 50 \Omega$, CW mode
Intermodulation Distortion IMD2 ${ }^{(1,2,3)}$						
IIP2, low	IIP2,1	-	110	-	dBm	IIP2 conditions table 8
IIP2, high	IIP2, h	-	120	-	dBm	
Intermodulation Distortion IMD3 ${ }^{(1,2,3)}$						
IIP3	IIP3	-	75	-	dBm	IIP3 conditions table 9
SV LTE Intermodulation ${ }^{(1,2,3)}$						
IIP3,SVLTE	IIP3,SV	-	75	-	dBm	SV-LTE conditions table 10

[^0]Single Pole Dual Throw Antenna Tuning Switch

RF large signal parameter

Table 5: IIP2 conditions table

Band	In-Band Frequency $[\mathrm{MHz}]$	Blocker Frequency 1 $[\mathrm{MHz}]$	Blocker Power 1 $[\mathrm{dBm}]$	Blocker Frequency 2 $[\mathrm{MHz}]$	Blocker Power 2 $[\mathrm{dBm}]$
Band 1 Low	2140	1950	20	190	-15
Band 1 High	2140	1950	20	4090	-15
Band 5 Low	881.5	836.5	20	45	-15
Band 5 High	881.5	836.5	20	1718	-15

Table 6: IIP3 conditions table

Band	In-Band Frequency $[\mathrm{MHz}]$	Blocker Frequency 1 $[\mathrm{MHz}]$	Blocker Power 1 $[\mathrm{dBm}]$	Blocker Frequency 2 $[\mathrm{MHz}]$	Blocker Power 2 $[\mathrm{dBm}]$
Band 1	2140	1950	20	1760	-15
Band 5	881.5	836.5	20	791.5	-15

Table 7: SV-LTE conditions table

Band	In-Band Frequency $[\mathrm{MHz}]$	Blocker Frequency 1 $[\mathrm{MHz}]$	Blocker Power 1 $[\mathrm{dBm}]$	Blocker Frequency 2 $[\mathrm{MHz}]$	Blocker Power 2 $[\mathrm{dBm}]$
Band 5	872	827	23	872	14
Band 13	747	786	23	747	14
Band 20	878	833	23	2544	14

Single Pole Dual Throw Antenna Tuning Switch
Application Information

6 Logic Truth Table

Table 8: Modes of Operation

State	Mode	CTRL
1	RF1 to RFc	0
2	RF2 to RFc	1

Mapping of Switch Rows to Bit: $\mathrm{ON}=1$, $\mathrm{OFF}=0$

7 Application Information

Pin Configuration and Function

Figure 6: BGSA12GN10 Pin Configuration (top view)

Table 9: Pin Definition and Function

Pin No.	Name	Function
1	N.C.	Not connected
2	RF1	RF1 port
3	GND	Ground
4	VDD	Power Supply
5	N.C.	Not connected
6	CTRL	GPIO digital control line
7	GND	Ground
8	RF2	RF2 port
9	N.C.	Not connected
10	RFC	Common RF

Single Pole Dual Throw Antenna Tuning Switch

Package Information

8 Package Information

Table 10: Mechanical Data

Parameter	Symbol	Value	Unit
X-Dimension	X	1.1 ± 0.05	mm
Y-Dimension	Y	1.5 ± 0.05	mm
Size	Size	2.25	$\mathrm{~mm}^{2}$
Height	H	$0.375+0.025 /-0.015$	mm

Figure 7: TSNP-10-1 Package Outline (top, side and bottom views)

Single Pole Dual Throw Antenna Tuning Switch

Package Information

Figure 8: TSNP-10-2 Package Outline (top, side and bottom views)

Package Information

Table 11: Year date code marking - digit " Y "

Year	"Y"	Year	"Y"	Year	"Y"
2010	0	2020	0	2030	0
2011	1	2021	1	2031	1
2012	2	2022	2	2032	2
2013	3	2023	3	2033	3
2014	4	2024	4	2034	4
2015	5	2025	5	2035	5
2016	6	2026	6	2036	6
2017	7	2027	7	2037	7
2018	8	2028	8	2038	8
2019	9	2029	9	2039	9

Table 12: Week date code marking - digit "W"

Week	"W"	Week	"W"	Week	"W"	Week	"W"	Week	"W"
1	A	12	N	23	4	34	h	45	v
2	B	13	P	24	5	35	j	46	x
3	C	14	Q	25	6	36	k	47	y
4	D	15	R	26	7	37	l	48	z
5	E	16	S	27	a	38	n	49	8
6	F	17	T	28	b	39	p	50	9
7	G	18	U	29	C	40	q	51	2
8	H	19	V	30	d	41	r	52	3
9	J	20	W	31	e	42	S	53	M
10	K	21	Y	32	f	43	t		
11	L	22	Z	33	g	44	u		

Single Pole Dual Throw Antenna Tuning Switch
Package Information

Pin 1 marking	\triangle	\square
	Date code (YW)	
	\square	Type code

Figure 9: TSNP10-1 Marking Specification (top view): Date code digits Y and W defined in Table 11/12

Figure 10: TSNP10-2 Marking Specification (top view): Date code digits Y and W defined in Table 11/12

Figure 11: Land pattern and stencil mask (TSNP-10-1/-2)

Single Pole Dual Throw Antenna Tuning Switch

Package Information

Figure 12: Carrier Tape (TSNP-10-1)

Figure 13: Carrier Tape (TSNP-10-2)

Revision History

Creation of document Revision 3.1, 2020-07-02

Page or Item	Subjects (major changes since previous revision)
5	Typo at max. control current high corrected
10	Typo in pin configuration and function corrected

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-07-02
 Published by
 Infineon Technologies AG
 81726 Munich, Germany

(C) 2020 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about any aspect of this document?
Email: erratum@infineon.com

Document reference

Doc_Number

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4AGSW5 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008955-TR3000 TGS4307 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR3000 MA4SW310B-1 MA4SW310 MA4SW110 SW-313-PIN SKY13321-360LF SKY13405-490LF BGSF 18DM20 E6327 SKY13415485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

[^0]: ${ }^{1)}$ Terminating Port Impedance: $Z_{0}=50 \Omega{ }^{2)}$ Supply Voltage: $V_{D D}=1.65-3.6 V^{3)}$ On application board without any matching components

