BGSA143GL10

Low Resistance Antenna Tuning Switch

Features

- Designed for high-linearity antenna tuning switching and RF tuning applications
- Ultra low $R_{\text {ON }}$ resistance of 1.15Ω at each port in ON state
- Low $C_{\text {OFF }}$ capacitance of 140 fF at each port in OFF state
- High RF operating peak voltage handling of 42 V in OFF state
- Resonance-Stopper Antenna Tuning
- Low harmonic generation
- 3 GPIO pins control interface
- No RF parameter change within supply voltage range
- Small form factor $1.1 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ (MSL1, $260^{\circ} \mathrm{C}$ per JEDEC J-STD-020)

$1.1 \times 1.5 \mathrm{~mm}^{2}$
- RoHS and WEEE compliant package

Application

- Impedance Tuning
- Antenna Tuning
- Inductance Tuning
- Tunable Filters

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Block diagram

Low Resistance Antenna Tuning Switch
Table of Contents

Table of Contents

Table of Contents 1
1 Features 2
2 Maximum Ratings 3
3 DC Characteristics 5
4 RF Small Signal Characteristics 6
5 RF large signal parameter 8
6 Logic Truth Table 10
7 Application Information 10
8 Package Information 11

Low Resistance Antenna Tuning Switch
Features

1 Features

- Designed for high-linearity antenna tuning switching and RF tuning applications
- Ultra low $R_{\text {ON }}$ resistance of 1.15Ω at each port in ON state
- Low $C_{\text {OFF }}$ capacitance of 140 fF at each port in OFF state
- High RF operating peak voltage handling of 42 V in OFF state
- Low harmonic generation
- Resonance-Stopper Antenna Tuning
- 3 GPIO pins control interface
- No RF parameter change within supply voltage range
- Small form factor $1.1 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ (MSL1, $260^{\circ} \mathrm{C}$ per JEDEC J-STD-020)
- RoHS and WEEE compliant package

Description

The BGSA143GL10 is a small and versatile Single-Pole Quad Throw (SP4T) RF switch optimized for low $C_{\text {off }}$ as well as low $R_{\text {on }}$ enabling applications up to 6.0 GHz . GPIO digital control lines offer the possibility to adopt SP4T, SPDT along with SPST topology for an optimum flexibility in RF Front-end designs.

The BGSA143GL10 is ideal for high Q tuning applications. This single supply chip integrates on-chip CMOS logic control. It can be driven by 2 or 3 CMOS or TTL compatible control input signals. Due to its high RF voltage ruggedness and OFF RF ports reflective short feature, it is suited for switching any reactive devices such as inductors and capacitors in RF matching circuits without significant losses, also mitigating or even eradicating unwanted parasitic RF resonances.

Product Name	Marking	Package
BGSA143GL10	AB	TSLP-10-2

Low Resistance Antenna Tuning Switch

Maximum Ratings

2 Maximum Ratings

Table 1: Maximum Ratings, Table I at $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Frequency Range	f	0.4	-	-	GHz	1)
Supply voltage ${ }^{2)}$	$V_{D D}$	-0.5	-	6.0	V	Only for infrequent and short duration time periods
Storage temperature range	$T_{\text {STG }}$	-55	-	150	${ }^{\circ} \mathrm{C}$	-
RF input power	$P_{\text {RF_max }}$	-	-	40	dBm	Pulsed RF input power, duty cycle of 25% with T_period= $4620 \mu \mathrm{~s}$, ON-state, setup as of Fig. 2
RF peak voltage	$V_{\text {RF_max }}$	-	-	50	V	Short term peaks ($1 \mu \mathrm{~s}$, duty cycle 0.1\%), Isolation mode, test setup acc. Fig. 1 and exceeding typical linearity, $R_{\text {ON }}$ and $C_{\text {OFF }}$ parameters
ESD capability, CDM ${ }^{2)}$	$V_{\text {ESD }{ }_{\text {com }}}$	-1	-	+1	kV	
ESD capability, HBM ${ }^{3)}$	$V_{\text {ESD }}^{\text {HBM }}$ m	-0.6	-	+0.6	kV	
ESD capability, system level (RF port) ${ }^{5 \text {) }}$	$V_{\text {ESD }{ }_{\text {ANT }}}$	-8	-	+8	kV	RFx vs system GND, with 27 nH shunt inductor on tested port
Junction temperature	T_{j}	-	-	125	${ }^{\circ} \mathrm{C}$	-
Thermal resistance junction - soldering point	$R_{\text {thJ }}$	-	-	43	K/W	-
Control Voltage Levels	$\mathrm{V}_{\text {ctrl }}$	-0.7	-	$\begin{aligned} & \mathrm{V}_{\text {Ctrl }}+0.7 \\ & \text { (max. } \\ & 3.6 \text {) } \end{aligned}$	V	-

${ }^{1)}$ Switch has a low-pass response. For higher frequencies, losses have to be considered for their impact on thermal heating. The DC voltage at RF ports $V_{R F D C}$ has to be OV.
${ }^{2)}$ Note: Consider any ripple voltages on top of $V_{I O}$. A high RF ripple at the $V_{I O}$ can exceed the maximum ratings by $V_{C t r l}=V_{D C}+V_{\text {Ripple }}$.
${ }^{3)}$ Field-Induced Charged-Device Model ANSI/ESDA/JEDEC JS-002 Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.
4) Human Body Model ANSI/ESDA/JEDEC JS-001 ($R=1,5 \mathrm{k} \Omega, C=100 \mathrm{pF}$).
${ }^{5)}$ IEC 61000-4-2 ($R=330 \Omega, C=150 \mathrm{pF}$), contact discharge.
Warning: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

Figure 1: RF operating voltage measurement configuration - OFF mode

Figure 2: RF operating and Harmonics generation measurement configuration - RFx ON mode

BGSA143GL10
Low Resistance Antenna Tuning Switch
DC Characteristics

3 DC Characteristics

Table 2: Operation Ranges

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Supply voltage	$V_{D D}$	1.65	2.8	3.6	V	-
Supply current	$I_{D D}$	45	60	2001	$\mu \mathrm{A}$	$\begin{aligned} & { }^{1} T_{A}=85^{\circ} \mathrm{C}, \\ & \mathrm{P}_{I N}=36 \mathrm{dBm}, \text { ON mode } \end{aligned}$
Control voltage low	$V_{\text {Ctrl,low }}$	0	-	0.45	V	-
Control voltage high	$V_{\text {Ctrl, }, \text { igh }}$	1.2	1.8	2.85	V	$V_{\text {Ctrl,high }}<V_{D D}$
Control current low	$I_{\text {ctrl,low }}$	-1	0	1	$\mu \mathrm{A}$	-
Control current high	$I_{\text {Ctrl,high }}$	-1	0	4	$\mu \mathrm{A}$	$V_{C t r l, \text { high }}<V_{D D}$ $1 \mathrm{M} \Omega$ Pull-Down resistor at Control Pins
Ambient temperature	T_{A}	-40	25	85	${ }^{\circ} \mathrm{C}$	-
Power Up Settling Time	$t_{\text {Pup }}$	-	10	25	$\mu \mathrm{s}$	Time from $V_{D D}$ Min. power level to 90 \% RF-signal
Switching Time	$t_{S T}$	-	5	8	$\mu \mathrm{s}$	Time between RF states in active mode $V_{\text {Ctl,high }} \mathrm{Min}$. or $V_{\text {ctl, low }}$ Max. level to 90 \% RFsignal
RF Rise Time	$t_{R T}$	-	1	5	$\mu \mathrm{s}$	Time between 10 \% to 90% RF-signal

Figure 3: BGSA143GL10 Switching Time Behavior

Low Resistance Antenna Tuning Switch
RF Small Signal Characteristics

4 RF Small Signal Characteristics

Table 3: Parametric specifications

Parameter	Symbol	Values			Unit	STATE / Notes
		Min.	Typ.	Max.		
Frequency range	f	0.4		6.0	GHz	$\begin{aligned} & T_{A}=-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}, \\ & Z_{0}=50 \Omega \end{aligned}$
RFx to RFc ON DC resistance	$R_{\text {ON }}$		1.15		Ω	
RFx to RFc OFF DC resistance	$R_{\text {OFF }}$	-	200	-	$k \Omega$	
RFx to GND ON DC resistance	$R_{\text {ON,Shunt }}$		5.9		Ω	
RFx to GND OFF DC resistance	$R_{\text {OFF,Shunt }}$	-	200	-	$\mathrm{k} \Omega$	
$R F x \text { to } R F c^{(1)}$ OFF capacitance	$C_{\text {OFF }}$	-	140	-	fF	

[^0]Low Resistance Antenna Tuning Switch
RF Small Signal Characteristics

Table 4: RF electrical parameters

Parameter	Symbol	Values			Unit	STATE / Notes
		Min.	Typ.	Max.		

Insertion Loss: RF1 to RFc, RF2 to RFc, RF3 to RFc or RF4 to RFc ${ }^{(1,2,3,4)}$

698-960 MHz	$1 L_{\text {SP4T }}$	0.18	0.3	dB	$\begin{aligned} Z_{0} & =50 \Omega \text { at all RF-ports, } \\ T_{A} & =-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} \end{aligned}$
$1710-1980 \mathrm{MHz}$		0.35	0.6	dB	
1981-2169 MHz		0.40	0.7	dB	
2170-2690 MHz		0.50	0.9	dB	
3400-3800 MHz		0.95	1.4	dB	
$5000-6000 \mathrm{MHz}$		2.05	3.2	dB	

Return Loss: RF1, RF2, RF3 or RF4 ${ }^{(1,2,3,4)}$

698-960 MHz	$R L_{\text {SP4T }}$	15	24	dB	$\begin{aligned} & Z_{0}=50 \Omega \text { at all RF-ports, } \\ & T_{A}=-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} \end{aligned}$
$1710-1980 \mathrm{MHz}$		11	16	dB	
1981-2169 MHz		10	15	dB	
2170-2690 MHz		9.6	13	dB	
$3400-3800 \mathrm{MHz}$		7.1	10	dB	
5000-6000 MHz		5.0	7.3	dB	
Isolation: All RF OFF ${ }^{(1,2,3,4)}$					
698-960 MHz	$1 \mathrm{SO}_{\text {OFF }}$	32	38	dB	$\begin{aligned} Z_{0} & =50 \Omega \text { at all RF-ports, } \\ T_{A} & =-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} \end{aligned}$
$1710-1980 \mathrm{MHz}$		22	27	dB	
$1981-2169 \mathrm{MHz}$		21	26	dB	
$2170-2690 \mathrm{MHz}$		17	24	dB	
$3400-3800 \mathrm{MHz}$		14	19	dB	
$5000-6000 \mathrm{MHz}$		10	14	dB	

[^1]Low Resistance Antenna Tuning Switch
RF large signal parameter

5 RF large signal parameter

Table 5: RF large signal specifications at $T_{A}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note / Test Condition
			Min.	Typ.		
RF Operating Voltage	$V_{\text {RF_opr }}$			42	V	In Isolation mode, test condition schematic in Fig. 1 for H2/H3 <-42 dBm @50 Ω

Harmonic Generation up to $\mathbf{1 2 . 7 5} \mathbf{~ G H z}$

All RF Ports - Second Order Har- monics	$P_{\mathrm{H} 2}$	-	-86	-	dBm	$25 \mathrm{dBm}, 50 \Omega, f_{0}=698 \mathrm{MHz}$
All RF Ports - Third Order Harmon- ics	$P_{\mathrm{H} 3}$	-	-91	-	dBm	$25 \mathrm{dBm}, 50 \Omega, f_{0}=698 \mathrm{MHz}$
All RF Ports - Second Order Har- monics	$P_{\mathrm{H} 2}$	-	-67	-	dBm	$35 \mathrm{dBm}, 50 \Omega, f_{0}=824 \mathrm{MHz}$
All RF Ports - Third Order Harmon- ics	$P_{\mathrm{H} 3}$	-	-63	-	dBm	$35 \mathrm{dBm}, 50 \Omega, f_{0}=824 \mathrm{MHz}$
All RF Ports - Second Order Har- monics	$P_{\mathrm{H} 2}$	-	-65	-	dBm	$33 \mathrm{dBm}, 50 \Omega, f_{0}=1960 \mathrm{MHz}$
All RF Ports - Third Order Harmon- ics	$P_{\mathrm{H} 3}$	-	-66	-	dBm	$33 \mathrm{dBm}, 50 \Omega, f_{0}=1960 \mathrm{MHz}$
All RF Ports - Second Order Har- monics	$P_{\mathrm{H} 2}$	-	-75	-	dBm	$25 \mathrm{dBm}, 50 \Omega, f_{0}=2500 \mathrm{MHz}$
All RF Ports - Third Order Harmon- ics	$P_{\mathrm{H} 3}$	-	-85	-	dBm	$25 \mathrm{dBm}, 50 \Omega, f_{0}=2500 \mathrm{MHz}$
All RF Ports	$P_{H x}$	-80	-	-	dBm	$25 \mathrm{dBm}, 50 \Omega$

Intermodulation Distortion IMD2

IIP2, low	IIP2, I	-	120	-	dBm	IIP2 conditions Tab. 6
IIP2, high	IIP2, h	-	130	-	dBm	

Intermodulation Distortion IMD3

IIP3	IIP3	-	78	-	dBm	IIP3 conditions Tab. 7

Low Resistance Antenna Tuning Switch
RF large signal parameter

Table 6: IIP2 conditions table

Band	In-Band Frequency $[\mathrm{MHz}]$	Blocker Frequency 1 $[\mathrm{MHz}]$	Blocker Power 1 $[\mathrm{dBm}]$	Blocker Frequency 2 $[\mathrm{MHz}]$	Blocker Power 2 $[\mathrm{dBm}]$
Band 1 Low	2140	1950	20	190	-15
Band 1 High	2140	1950	20	4090	-15
Band 5 Low	881.5	836.5	20	45	-15
Band 5 High	881.5	836.5	20	1718	-15

Table 7: IIP3 conditions table

Band	In-Band Frequency $[\mathrm{MHz}]$	Blocker Frequency 1 $[\mathrm{MHz}]$	Blocker Power 1 $[\mathrm{dBm}]$	Blocker Frequency 2 $[\mathrm{MHz}]$	Blocker Power 2 $[\mathrm{dBm}]$
Band 1	2140	1950	20	1760	-15
Band 5	881.5	836.5	20	791.5	-15

Low Resistance Antenna Tuning Switch
Application Information

6 Logic Truth Table

Table 8: Modes of Operation

State	Mode	CTL2	CTL1	CTL0
1	RF1 to RFc on ${ }^{1)}$	0	0	0
2	RF2 to RFc on $^{1)}$	0	0	1
3	RF3 to RFc on $^{1)}$	0	1	0
4	RF4 to RFc on $^{1)}$	0	1	1
5	RFc isolated from all RFx all RFx ports shunt to GND $^{1)}$	1	0	0
6	RF1 to RFc on, RF4 to RFc on $^{1)}$	1	0	1
7	RF2 to RFc on, RF3 to RFc on ${ }^{1)}$	1	1	0
8	all RFx to RFc on	1	1	1

${ }^{1)}$ all other RFx ports Shunt to GND

7 Application Information

Pin Configuration and Function

Figure 4: BGSA143GL10 Pin Configuration (top view)

Table 9: Pin definition and function

Pin No.	Name	Function
1	RF4	RF4 Port
2	RF1	RF1 Port
3	CTL2	GPIO Control
4	VDD	Power Supply
5	CTL1	GPIO Control
6	CTL0	GPIO Control
7	GND	Ground
8	RF2	RF2 Port
9	RF3	RF3 Port
10	RFC	Common RF Port

Low Resistance Antenna Tuning Switch
Package Information

8 Package Information

Figure 5: TSLP-10-2 Package Outline (top, side and bottom views)

Figure 6: Marking Specification (top view): Date code digits Y and W defined in Table 10/11

Low Resistance Antenna Tuning Switch
Package Information

Table 10: Year date code marking - digit " Y "

Year	"Y"	Year	"Y"
2010	0	2020	0
2011	1	2021	1
2012	2	2022	2
2013	3	2023	3
2014	4	2024	4
2015	5	2025	5
2016	6	2026	6
2017	7	2027	7
2018	8	2028	8
2019	9	2029	9

Table 11: Week date code marking - digit "W"

Week	"W"	Week	"W"	Week	"W"	Week	"W"	Week	"W"
1	A	12	N	23	4	34	h	45	v
2	B	13	P	24	5	35	j	46	x
3	C	14	Q	25	6	36	k	47	y
4	D	15	R	26	7	37	l	48	z
5	E	16	S	27	a	38	n	49	8
6	F	17	T	28	b	39	p	50	9
7	G	18	U	29	C	40	q	51	2
8	H	19	V	30	d	41	r	52	3
9	J	20	W	31	e	42	S		
10	K	21	Y	32	f	43	t		
11	L	22	Z	33	g	44	u		

Package Information

Figure 7: Footprint Recommendation

Figure 8: TSLP-10-2 Carrier Tape

Low Resistance Antenna Tuning Switch

Revision History	
Page or Item	Subjects (major changes since previous revision)
Revision 2.1, 2021-06-23	
Revision 2.1	creation of document 2021-06-23

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.
Edition 2021-06-23
Published by
Infineon Technologies AG
81726 Munich, Germany
(C) 2021 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about any aspect of this document?
Email: erratum@infineon.com

Document reference

Doc_Number

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4AGSW5 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008955-TR3000 TGS4307 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR3000 MA4SW310B-1 MA4SW310 MA4SW110 SW-313-PIN SKY13321-360LF SKY13405-490LF BGSF 18DM20 E6327 SKY13415485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

[^0]: ${ }^{1)} C_{\text {OFF }}$ represents the series capacitance RFx to GND. It is fitting to the Isolation Values for OPEN Shunts.

[^1]: ${ }^{1)}$ Valid for all RF power levels, no compression behavior
 2) Network analyser input power: $P_{I N}=-20 \mathrm{dBm}$
 ${ }^{3)}$ On application board without any matching components
 ${ }^{4)}$ OFF port shunts switches closed

