PNP Silicon Darlington Transistor

- High collector current
- Low collector-emitter saturation voltage
- Complementary types: BSP50...BSP52 (NPN)
- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

Type	Marking						Pin Configuration					Package
BSP60	BSP60	$1=\mathrm{B}$	$2=\mathrm{C}$	$3=\mathrm{E}$	$4=\mathrm{C}$	-	-	SOT223				
BSP61	BSP61	$1=\mathrm{B}$	$2=\mathrm{C}$	$3=\mathrm{E}$	$4=\mathrm{C}$	-	-	SOT223				
BSP62	BSP62	$1=\mathrm{B}$	$2=\mathrm{C}$	$3=\mathrm{E}$	$4=\mathrm{C}$	-	-	SOT223				

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CEO }}$		V
BSP60		45	
BSP61		60	
BSP62		80	
Collector-base voltage	$V_{\text {CBO }}$		
BSP60		60	
BSP61		80	
BSP62		90	
Emitter-base voltage	$V_{\text {EBO }}$	5	
Collector current	I_{C}	1	A
Peak collector current, $t_{p} \leq 10 \mathrm{~ms}$	ICM	2	
Base current	I_{B}	100	mA
Total power dissipation- $T_{\mathrm{S}} \leq 124^{\circ} \mathrm{C}$	$P_{\text {tot }}$	1.5	W
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	-65 ... 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1}$)	$R_{\text {thJS }}$	≤ 17	K/W

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage $\begin{aligned} & I_{C}=10 \mathrm{~mA}, I_{\mathrm{B}}=0, \mathrm{BSP} 60 \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B}}=0, \mathrm{BSP} 61 \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B}}=0, \mathrm{BCP} 62 \end{aligned}$	$V_{(\mathrm{BR}) \mathrm{CEO}}$	$\begin{aligned} & 45 \\ & 60 \\ & 80 \end{aligned}$			V
Collector-base breakdown voltage $\begin{aligned} & I_{\mathrm{C}}=100 \mu \mathrm{~A}, I_{\mathrm{E}}=0, \mathrm{BSP} 60 \\ & I_{\mathrm{C}}=100 \mu \mathrm{~A}, I_{\mathrm{E}}=0, \mathrm{BSP} 61 \\ & I_{\mathrm{C}}=100 \mu \mathrm{~A}, I_{\mathrm{E}}=0, \mathrm{BSP} 62 \end{aligned}$	$V_{(\mathrm{BR}) \mathrm{CBO}}$	$\begin{aligned} & 60 \\ & 80 \\ & 90 \end{aligned}$			
Emitter-base breakdown voltage $I_{E}=100 \mu \mathrm{~A}, I_{\mathrm{C}}=0$	$V_{(\mathrm{BR}) \mathrm{EBO}}$	5	-	-	
Collector-emitter cutoff current $V_{\mathrm{CE}}=V_{\mathrm{CEO} \max }, V_{\mathrm{BE}}=0$	$I_{\text {CES }}$	-	-	10	$\mu \mathrm{A}$
Emitter-base cutoff current $V_{E B}=4 \mathrm{~V}, I_{C}=0$	IEBO	-	-	10	$\mu \mathrm{A}$
DC current gain ${ }^{2}$) $\begin{aligned} & I_{\mathrm{C}}=150 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V} \\ & I_{\mathrm{C}}=500 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V} \end{aligned}$	$h_{\text {FE }}$	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$			-
Collector-emitter saturation voltage ${ }^{2)}$ $\begin{aligned} & I_{\mathrm{C}}=500 \mathrm{~mA}, I_{\mathrm{B}}=0.55 \mathrm{~mA} \\ & I_{\mathrm{C}}=1 \mathrm{~A}, I_{\mathrm{B}}=1 \mathrm{~mA} \end{aligned}$	$V_{\text {CEsat }}$	-		$\begin{aligned} & 1.3 \\ & 1.8 \end{aligned}$	V
Base emitter saturation voltage ${ }^{2)}$ $\begin{aligned} & I_{C}=500 \mathrm{~mA}, I_{\mathrm{B}}=0.5 \mathrm{~mA} \\ & I_{\mathrm{C}}=1 \mathrm{~A}, I_{\mathrm{B}}=1 \mathrm{~mA} \end{aligned}$	$V_{\text {BEsat }}$	-	-	$\begin{aligned} & 1.9 \\ & 2.2 \end{aligned}$	

AC Characteristics

Transition frequency $I_{\mathrm{C}}=100 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=100 \mathrm{MHz}$	f_{T}	-	200	-	MHz

${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note ANO77 (Thermal Resistance Calculation)
${ }^{2}$ Pulse test: $\mathrm{t}<300 \mu \mathrm{~s}$; $\mathrm{D}<2 \%$

Switching time test circuit

Switching time waveform

BSP60-BSP62

$$
\begin{aligned}
& \text { DC current gain } h_{\mathrm{FE}}=f\left(I_{\mathrm{C}}\right) \\
& V_{\mathrm{CE}}=10 \mathrm{~V}
\end{aligned}
$$

Base-emitter saturation voltage
$I_{C}=f\left(V_{\text {BEsat }}\right), I_{\mathrm{B}}=$ Parameter

Collector-emitter saturation voltage

$I_{\mathrm{C}}=f\left(V_{\text {CEsat }}\right), I_{\mathrm{B}}=$ Parameter

Transition frequency $f_{\mathrm{T}}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=10 \mathrm{~V}, f=100 \mathrm{MHz}$

Collector-base capacitance $C_{c b}=f\left(V_{\mathrm{CB}}\right)$ Emitter-base capacitance $C_{\text {eb }}=f\left(V_{\mathrm{EB}}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

External resistance $R_{\mathrm{BE}}=f\left(T_{\mathrm{A}}\right)^{* *}$
$V_{\text {CB }}=V_{\text {CEmax }}$
${ }^{* *} R_{\text {BEmax }}$ for thermal stability

Package Outline

Foot Print

Packing

Reel $\varnothing 180 \mathrm{~mm}=1.000$ Pieces/Reel
Reel ø $330 \mathrm{~mm}=4.000$ Pieces/Reel

Edition 2009-11-16

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Darlington Transistors category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
NJVMJD128T4G 281287X BDV64B NJVMJD117T4G LB1205-L-E 2N6053 MPSA14 TIP140 MPSA13 TIP127L-BP 2N6383
ULN2003ACM/TR 2N7371 2N6058 2N6059 2N6051 MJ2501 MJ3001 2SB1383 2SB1560 2SB852KT146B 2SD2560 TIP112TU BCV27
MMSTA28T146 NTE2557 NJVNJD35N04T4G MPSA29-D26Z MJD127T4 FJB102TM BSP61H6327XTSA1 BU941ZPFI 2SD1980TL
NTE2350 NTE245 NTE246 NTE2649 NTE46 NTE98 ULN2003ADR2G NTE2344 NTE2349 NTE2405 NTE243 NTE244 NTE247
NTE248 NTE249 NTE253 NTE2548

