

RoHS

Features

- Logic Level Input
- Input Protection (ESD)
- Thermal shutdown with auto restart
- Green product (RoHS compliant)
- Overload protection
- Short circuit protection
- Overvoltage protection
- Current limitation

Product Summary

Drain source voltage	V_{DS}	42	V
On-state resistance	$R_{\mathrm{DS}(\text { on })}$	50	$\mathrm{~m} \Omega$
Nominal load current	$I_{\mathrm{D}(\text { Nom })}$	3.5	A
Clamping energy	E_{AS}	3	J

- Analog driving possible

Application

- All kinds of resistive, inductive and capacitive loads in switching or linear applications
- $\mu \mathrm{C}$ compatible power switch for 12 V DC applications
- Replaces electromechanical relays and discrete circuits

General Description

N channel vertical power FET in Smart SIPMOS ${ }^{\circledR}$ technology. Fully protected by embedded protection functions.

Complete product spectrum and additional information http://www.infineon.com/hitfet

Smart Low Side Power Switch
Power HITFET BTS 134D

Maximum Ratings at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Drain source voltage	$V_{\text {DS }}$	42	V
Supply voltage for full short circuit protection	$V_{\text {bb(SC) }}$	42	
Continuous input voltage ${ }^{1}$)	$V_{\text {IN }}$	-0.2 2) $\ldots+10$	
Continuous input current ${ }^{2}$) $\begin{aligned} & -0.2 \mathrm{~V} \leq V_{\text {IN }} \leq 10 \mathrm{~V} \\ & V_{\text {IN }}<-0.2 \mathrm{~V} \text { or } V_{\text {IN }}>10 \mathrm{~V} \end{aligned}$	$\iota_{\text {IN }}$	self limited $\left\|I_{\mathrm{IN}}\right\| \leq 2$	mA
Operating temperature	T_{j}	-40 ... +150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	$-55 \ldots+150$	
Power dissipation ${ }^{5)}$ $T_{\mathrm{C}}=85^{\circ} \mathrm{C}$ $6 \mathrm{~cm}^{2}$ cooling area, $T_{\mathrm{A}}=85^{\circ} \mathrm{C}$	$P_{\text {tot }}$	$\begin{aligned} & 43 \\ & 1.1 \end{aligned}$	W
Unclamped single pulse inductive energy ${ }^{2)}$	$E_{\text {AS }}$	3	J
Load dump protection $\left.V_{\text {LoadDump }}{ }^{2) 3}\right)=V_{A}+V_{S}$ $V_{\mathrm{IN}}=0$ and $10 \mathrm{~V}, \mathrm{t}_{\mathrm{d}}=400 \mathrm{~ms}, R_{\mathrm{I}}=2 \Omega$, $R_{\mathrm{L}}=4.5 \Omega, V_{\mathrm{A}}=13.5 \mathrm{~V}$	$V_{\text {LD }}$	65	V
Electrostatic discharge voltage ${ }^{2)}$ (Human Body Model) according to Jedec norm EIA/JESD22-A114-B, Section 4	$V_{\text {ESD }}$	2	kV

Thermal resistance

junction - case:	$R_{\text {thJc }}$	1.5	K/W
SMD: junction - ambient	$R_{\text {thJA }}$		
@ min. footprint		115	
$@ 6 \mathrm{~cm}^{2}$ cooling area 4)		55	

${ }^{1}$ For input voltages beyond these limits I_{IN} has to be limited.
$2_{\text {not subject to production test, specified by design }}$
${ }^{3} V_{\text {Loaddump }}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
${ }^{4}$ Device on $50 \mathrm{~mm}^{*} 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for drain connection. PCB mounted vertical without blown air.
$5_{\text {not subject to production test, calculated by }} \mathrm{R}_{\text {thJA }}$ and $\mathrm{R}_{\mathrm{ds}(\mathrm{on})}$

Electrical Characteristics

Parameter at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics					
Drain source clamp voltage $T_{\mathrm{j}}=-40 \ldots+150, I_{\mathrm{D}}=10 \mathrm{~mA}$	$V_{\text {DS(AZ) }}$	42	-	55	V
Off-state drain current $\begin{aligned} & T_{\mathrm{j}}=-40 \ldots+85^{\circ} \mathrm{C}, V_{\mathrm{DS}}=32 \mathrm{~V}, V_{\mathrm{IN}}=0 \mathrm{~V} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	IDSS	-	$\begin{gathered} 1.5 \\ 5 \end{gathered}$	$\begin{gathered} 8 \\ 15 \end{gathered}$	$\mu \mathrm{A}$
Input threshold voltage $\begin{aligned} & I_{\mathrm{D}}=1.4 \mathrm{~mA}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & I_{\mathrm{D}}=1.4 \mathrm{~mA}, T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {IN(th }}$	$\begin{aligned} & 1.3 \\ & 0.8 \\ & \hline \end{aligned}$	1.7	2.2	V
On state input current	$I_{\text {IN(on) }}$	-	10	30	$\mu \mathrm{A}$
On-state resistance $\begin{aligned} & V_{\mathrm{IN}}=5 \mathrm{~V}, I_{\mathrm{D}}=3 \mathrm{~A}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{IN}}=5 \mathrm{~V}, I_{\mathrm{D}}=3 \mathrm{~A}, T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$R_{\text {DS(on) }}$	-	$\begin{aligned} & 45 \\ & 75 \end{aligned}$	$\begin{gathered} 60 \\ 100 \end{gathered}$	$\mathrm{m} \Omega$
On-state resistance $\begin{aligned} & V_{\mathrm{IN}}=10 \mathrm{~V}, I_{\mathrm{D}}=3 \mathrm{~A}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{IN}}=10 \mathrm{~V}, I_{\mathrm{D}}=3 \mathrm{~A}, T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$R_{\text {DS(on) }}$	-	$\begin{aligned} & 35 \\ & 65 \end{aligned}$	$\begin{aligned} & 50 \\ & 90 \end{aligned}$	
Nominal load current ${ }^{5)}$ $T_{\mathrm{j}}<150^{\circ} \mathrm{C}, V_{\mathrm{IN}}=10 \mathrm{~V}, T_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{SMD}{ }^{1)}$	${ }^{\text {D }}$ (Nom)	3.5	4.6	-	A
Nominal load current ${ }^{5)}$ $V_{\mathrm{IN}}=10 \mathrm{~V}, V_{\mathrm{DS}}=0.5 \mathrm{~V}, T_{\mathrm{C}}=85^{\circ} \mathrm{C}, T_{\mathrm{j}}<150^{\circ} \mathrm{C}$	$I_{\text {D (ISO) }}$	7.1	10	-	
Current limit (active if $\left.V_{D S}>2.5 \mathrm{~V}\right)^{2}$) $V_{\mathrm{IN}}=10 \mathrm{~V}, V_{\mathrm{DS}}=12 \mathrm{~V}, t_{\mathrm{m}}=200 \mu \mathrm{~s}$	$I_{\text {d (lim) }}$	18	24	30	

1@ $6 \mathrm{~cm}^{2}$ cooling area
${ }^{2}$ Device switched on into existing short circuit (see diagram Determination of $\mathrm{D}(\mathrm{lim})$). If the device is in on condit and a short circuit occurs, these values might be exceeded for max. $50 \mu \mathrm{~s}$.
$5_{\left.\text {not subject to production test, calculated by } R_{\text {thJA }} \text { and } R_{d s(o n)}\right)}$

Electrical Characteristics

Parameter at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Turn-on time $\quad V_{\text {IN }}$ to $90 \% I_{\mathrm{D}}$: $R_{\mathrm{L}}=4.7 \Omega, V_{\mathrm{IN}}=0 \text { to } 10 \mathrm{~V}, V_{\mathrm{bb}}=12 \mathrm{~V}$	$t_{\text {on }}$	-	60	100	$\mu \mathrm{s}$
Turn-off time $V_{I N}$ to $10 \% I_{D}$: $R_{\mathrm{L}}=4.7 \Omega, V_{\mathrm{IN}}=10 \text { to } 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{bb}}=12 \mathrm{~V}$	$t_{\text {off }}$	-	60	100	
Slew rate on $\quad 70$ to $50 \% V_{b b}$: $R_{\mathrm{L}}=4.7 \Omega, V_{\mathrm{IN}}=0 \text { to } 10 \mathrm{~V}, V_{\mathrm{bb}}=12 \mathrm{~V}$	$-\mathrm{d} \mathrm{V}_{\text {DS }} / \mathrm{dt}_{\mathrm{on}}$	-	0.3	1.5	V/us
$\begin{aligned} & \text { Slew rate off } \quad 50 \text { to } 70 \% V_{\mathrm{bb}} \text { : } \\ & R_{\mathrm{L}}=4.7 \Omega, V_{\mathrm{IN}}=10 \text { to } 0 \mathrm{~V}, V_{\mathrm{bb}}=12 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{dV} \mathrm{DSS}^{/ \mathrm{dt}_{\text {off }}}$	-	0.7	1.5	

Protection Functions ${ }^{1)}$

Thermal overload trip temperature	T_{it}	150	175	-	${ }^{\circ} \mathrm{C}$
Thermal hysteresis ${ }^{2)}$	ΔT_{jt}	-	10	-	K
Input current protection mode $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$	$I_{\mathrm{N}(\text { Prot })}$	-	130	300	$\mu \mathrm{~A}$
Unclamped single pulse inductive energy ${ }^{2)}$ $I_{\mathrm{D}}=3 \mathrm{~A}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}, V_{\mathrm{bb}}=12 \mathrm{~V}$	E_{AS}	3	-	-	J

Inverse Diode

Inverse diode forward voltage $t_{\mathrm{F}}=15 \mathrm{~A}, t_{\mathrm{m}}=250 \mu \mathrm{~s}, V_{\mathrm{IN}}=0 \mathrm{~V}$,	V_{SD}	-	1.0	1.5	V
$t_{\mathrm{P}}=300 \mu \mathrm{~s}$					

[^0]
Block diagram

Terms

Input circuit (ESD protection)

Inductive and overvoltage output clamp

Short circuit behaviour

Tid

1 Maximum allowable power dissipation
$P_{\text {tot }}=f\left(T_{C}\right)$ resp.
$P_{\text {tot }}=f\left(T_{A}\right) @ R_{\text {thJA }}=55 \mathrm{~K} / \mathrm{W}$

3 On-state resistance
$R_{\mathrm{ON}}=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right) ; I_{\mathrm{D}}=3 \mathrm{~A} ; V_{\mathrm{IN}}=5 \mathrm{~V}$

2 On-state resistance
$R_{\mathrm{ON}}=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right) ; I_{\mathrm{D}}=3 \mathrm{~A} ; V_{\mathrm{IN}}=10 \mathrm{~V}$

4 Typ. input threshold voltage
$\mathbf{V}_{\mathrm{IN}(\mathrm{th})}=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right) ; I_{\mathrm{D}}=0.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V}$

5 Typ. transfer characteristics
$\mathrm{I}_{\mathrm{D}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{IN}}\right) ; \mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V} ; \mathrm{T}_{\text {Jstart }}=25^{\circ} \mathrm{C}$

7 Typ. output characteristics
$\mathrm{I}_{\mathrm{D}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{DS}}\right) ; \mathrm{T}_{\text {Jstart }}=25^{\circ} \mathrm{C}$
Parameter: V_{IN}

6 Typ. short circuit current
$I_{D(\lim)}=f\left(T_{j}\right) ; V_{D S}=12 \mathrm{~V}$
Parameter: V_{IN}

8 Off-state drain current $I_{\text {DSS }}=f\left(T_{j}\right)$

9 Typ. overload current

$I_{D(\lim)}=f(t), V_{b b}=12 \mathrm{~V}$, no heatsink
Parameter: $T_{\text {jstart }}$

10 Typ. transient thermal impedance $Z_{\text {thJA }}=f\left(t_{p}\right) @ 6$ cm2 cooling area Parameter: $D=t_{\mathrm{p}} / T$

11 Determination of $I_{D(\lim)}$

$I_{D(\lim)}=f(t) ; t_{m}=\mathbf{2 0 0 \mu s}$
Parameter: $T_{\text {Jstart }}$

1 Package Outlines

GPT09277

Figure 1 PG-TO252-3-11 (Plastic Dual Small Outline Package) (RoHS-Compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pbfree finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Please specify the package needed (e.g. green package) when placing an order

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

Smart Low Side Power Switch
Power HITFET BTS 134D

Revision History

2 Revision History

Version	Date	Changes
Rev. 1.3	$2006-12-22$	released automotive green and robust version (BTS) Package parameter (humidity and climatic) removed in Maximum ratings
Rev. 1.2	2006-12-11	AEC icon added RoHS icon added Green product (RoHS-compliant) added to the feature list Package information updated to green Green explanation added
Rev. 1.1	$2006-08-08$	released non automotive green version (ITS)
Rev. 1.0	$2004-03-05$	released production version

Edition 2006-12-22

Published by
Infineon Technologies AG

81726 Munich, Germany

© Infineon Technologies AG 2007.

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G FPF1504UCX TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC25051YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR SIP32510DT-T1-GE3 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12

[^0]: ${ }^{1}$ Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation
 $2_{\text {not subject to production test, specified by design }}$

