

RoHS

Features

- Logic Level Input
- Input Protection (ESD)
- Thermal shutdown with latch
- Overload protection
- Short circuit protection
- Overvoltage protection
- Current limitation
- Status feedback with external input resistor
- Analog driving possible

Product Summary

Drain source voltage	V_{DS}	60	V
On-state resistance	$R_{\mathrm{DS}(\mathrm{on})}$	28	$\mathrm{~m} \Omega$
Current limit	$I_{\mathrm{D}(\mathrm{lim})}$	25	A
Nominal load current	$I_{\mathrm{D}(\mathrm{ISO})}$	12	A
Clamping energy	E_{AS}	4000	mJ

- AEC qualified
- Green product (RoHS compliant)

Application

- All kinds of resistive, inductive and capacitive loads in switching or linear applications
- $\mu \mathrm{C}$ compatible power switch for 12 V and 24 V DC applications
- Replaces electromechanical relays and discrete circuits

General Description

N channel vertical power FET in Smart SIPMOS ${ }^{\circledR}$ chip on chip technology. Providing embedded protection functions.

Maximum Ratings at $\mathrm{Tj}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Value	Unit
Drain source voltage	$V_{\text {DS }}$	60	V
Drain source voltage for short circuit protection	$V_{\text {DS }(S C)}$	32	
Continuous input current ${ }^{1)}$ $\begin{aligned} & -0.2 \mathrm{~V} \leq V_{\mathrm{IN}} \leq 10 \mathrm{~V} \\ & V_{\mathrm{IN}}<-0.2 \mathrm{~V} \text { or } V_{\mathrm{IN}}>10 \mathrm{~V} \end{aligned}$	$I_{\text {IN }}$	no limit $\left\|I_{I N}\right\| \leq 2$	mA
Operating temperature	T_{i}	-40 ... +150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	-55 ... +150	
Power dissipation $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	149	W
Unclamped single pulse inductive energy $I_{\mathrm{D}(\mathrm{ISO})}=12 \mathrm{~A}$	$E_{\text {AS }}$	4000	mJ
Electrostatic discharge voltage (Human Body Model) according to MIL STD 883D, method 3015.7 and EOS/ESD assn. standard S5.1-1993	$V_{\text {ESD }}$	3000	V
$\begin{aligned} & \text { Load dump protection } V_{\text {LoadDump }}{ }^{2)}=V_{\mathrm{A}}+V_{\mathrm{S}} \\ & V_{\mathrm{IN}}=\text { low or high; } V_{\mathrm{A}}=13.5 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{d}}=400 \mathrm{~ms}, R_{\mathrm{l}}=2 \Omega, I_{\mathrm{D}}=0,5^{*} 12 \mathrm{~A} \\ & \mathrm{t}_{\mathrm{d}}=400 \mathrm{~ms}, R_{\mathrm{I}}=2 \Omega, \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A} \end{aligned}$	$V_{\text {LD }}$	$\begin{gathered} 100 \\ 84 \end{gathered}$	

Thermal resistance

junction - case:	$R_{\text {thJC }}$	0.84	K/W
junction - ambient:	$R_{\text {thJA }}$	75	
SMD version, device on PCB: 3)	$R_{\text {thJA }}$	45	

[^0]Electrical Characteristics

Parameter	Symbol	Values			Unit
at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified		min.	typ.	max.	

Characteristics

Drain source clamp voltage $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, I_{\mathrm{D}}=10 \mathrm{~mA}$	$V_{\text {DS(AZ) }}$	60	-	73	V
Off state drain current $V_{\mathrm{DS}}=32 \mathrm{~V}, T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, V_{\mathrm{IN}}=0 \mathrm{~V}$	${ }^{\prime}$ DSs	-	-	20	$\mu \mathrm{A}$
Input threshold voltage $I_{D}=2,7 \mathrm{~mA}$	$V_{\text {IN(th })}$	1.3	1.7	2.2	V
Input current - normal operation, $I_{\mathrm{D}}<I_{\mathrm{D}(\text { lim })}$: $V_{\text {IN }}=10 \mathrm{~V}$	$\operatorname{IN}(1)$	-	35	100	$\mu \mathrm{A}$
Input current - current limitation mode, $I_{D}=I_{D(\text { lim })}$: $V_{\mathrm{IN}}=10 \mathrm{~V}$	$I_{\text {IN(2) }}$	-	270	500	
Input current - after thermal shutdown, $I_{D}=0 \mathrm{~A}$: $V_{\mathrm{IN}}=10 \mathrm{~V}$	$I_{1 N(3)}$	1000	2500	4000	
Input holding current after thermal shutdown ${ }^{1)}$ $\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	${ }_{I N}(\mathrm{H})$	$\begin{aligned} & 500 \\ & 300 \\ & \hline \end{aligned}$		-	
On-state resistance $\begin{aligned} & V_{\mathrm{IN}}=5 \mathrm{~V}, I_{\mathrm{D}}=12 \mathrm{~A}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{IN}}=5 \mathrm{~V}, I_{\mathrm{D}}=12 \mathrm{~A}, T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$R_{\text {DS(on) }}$	-	$\begin{aligned} & 31 \\ & 52 \end{aligned}$	$\begin{aligned} & 34 \\ & 68 \end{aligned}$	$\mathrm{m} \Omega$
On-state resistance $\begin{aligned} & V_{\mathrm{IN}}=10 \mathrm{~V}, I_{\mathrm{D}}=12 \mathrm{~A}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{IN}}=10 \mathrm{~V}, I_{\mathrm{D}}=12 \mathrm{~A}, T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$R_{\text {DS(on) }}$	-	$\begin{aligned} & 25 \\ & 45 \end{aligned}$	$\begin{aligned} & 28 \\ & 56 \end{aligned}$	
Nominal load current (ISO 10483) $V_{\mathrm{IN}}=10 \mathrm{~V}, V_{\mathrm{DS}}=0.5 \mathrm{~V}, T_{\mathrm{C}}=85^{\circ} \mathrm{C}$	$I_{\text {(ISO) }}$	12	-	-	A

[^1]Auto restart behaviour can occur.

Electrical Characteristics

Parameter at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics					
Initial peak short circuit current limit $V_{\text {IN }}=10 \mathrm{~V}, V_{\mathrm{DS}}=12 \mathrm{~V}$	${ }^{\text {D (SCp) }}$	-	100	-	A
Current limit ${ }^{1)}$ $\begin{aligned} & V_{\mathrm{IN}}=10 \mathrm{~V}, V_{\mathrm{DS}}=12 \mathrm{~V}, t_{\mathrm{m}}=350 \mu \mathrm{~s}, \\ & T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {D (lim) }}$	25	35	50	

Dynamic Characteristics

Turn-on time $\quad V_{\text {IN }}$ to $90 \% I_{\mathrm{D}}$: $R_{\mathrm{L}}=2,2 \Omega, V_{\mathrm{IN}}=0 \text { to } 10 \mathrm{~V}, V_{\mathrm{bb}}=12 \mathrm{~V}$	$t_{\text {on }}$	-	40	100	$\mu \mathrm{s}$
Turn-off time $\quad V_{I N}$ to $10 \% I_{\mathrm{D}}$: $R_{\mathrm{L}}=2,2 \Omega, V_{\mathrm{IN}}=10$ to $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{bb}}=12 \mathrm{~V}$	$t_{\text {off }}$	-	70	170	
$\begin{aligned} & \text { Slew rate on } \quad 70 \text { to } 50 \% V_{\mathrm{bb}}: \\ & R_{\mathrm{L}}=2,2 \Omega, V_{\mathrm{IN}}=0 \text { to } 10 \mathrm{~V}, V_{\mathrm{bb}}=12 \mathrm{~V} \end{aligned}$	$-\mathrm{d} \mathrm{V}_{\mathrm{DS}} / \mathrm{dt}_{\mathrm{on}}$	-	1	3	$\mathrm{V} / \mathrm{\mu s}$
$\begin{aligned} & \text { Slew rate off } \quad 50 \text { to } 70 \% V_{\mathrm{bb}} \text { : } \\ & R_{\mathrm{L}}=2,2 \Omega, V_{\mathrm{IN}}=10 \text { to } 0 \mathrm{~V}, V_{\mathrm{bb}}=12 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{dV} \mathrm{VSS} / \mathrm{dt}_{\text {off }}$	-	1	3	

Protection Functions ${ }^{2)}$

Thermal overload trip temperature	$T_{\text {jt }}$	150	165	-	${ }^{\circ} \mathrm{C}$
Unclamped single pulse inductive energy	E_{AS}				mJ
$I_{\mathrm{D}}=12 \mathrm{~A}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}, V_{\mathrm{bb}}=32 \mathrm{~V}$		4000	-	-	
$I_{\mathrm{D}}=12 \mathrm{~A}, T_{\mathrm{j}}=150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=32 \mathrm{~V}$		900	-	-	

Inverse Diode

Inverse diode forward voltage	V_{SD}	-	1.13	-	V
$I_{\mathrm{F}}=5^{*} 12 \mathrm{~A}, t_{\mathrm{m}}=300 \mu \mathrm{~S}, V_{\mathrm{IN}}=0 \mathrm{~V}$					

[^2]
Block Diagramm

Terms

Input circuit (ESD protection)

ESD zener diodes are not designed for DC current > $2 \mathrm{~mA} @ V_{\mathrm{IN}}>10 \mathrm{~V}$.

Inductive and overvoltage output clamp

Short circuit behaviour

t_{0} : Turn on into a short circuit
t_{m} : Measurementpoint for $I_{D}(\lim)$
t_{1} : Activation of the fast temperature sensor and regulation of the drain current to a level where the junction temperature remains constant.
t_{2} : Thermal shutdown caused by the second temperature sensor, achieved by an integrating measurement.

Maximum allowable power dissipation

$P_{\text {tot }}=f\left(T_{c}\right)$

On-state resistance
$R_{\mathrm{ON}}=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right) ; \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A} ; \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$

On-state resistance
$R_{\mathrm{ON}}=f\left(\mathrm{~T}_{\mathrm{j}}\right) ; \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A} ; \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$

Typ. input threshold voltage
$V_{\mathrm{IN}(\mathrm{th})}=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right) ; \mathrm{l}_{\mathrm{D}}=2,7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V}$

Typ. transfer characteristics
$\mathrm{I}_{\mathrm{D}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{IN}}\right) ; \mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Transient thermal impedance
$Z_{\text {thJC }}=f\left(t_{\mathrm{p}}\right)$
parameter: $D=t_{\mathrm{p}} / T$

Typ. output characteristic
$I_{D}=f\left(V_{D S}\right) ; T_{j}=25^{\circ} \mathrm{C}$
Parameter: V_{IN}

Application examples:

Status signal of thermal shutdown by monitoring input current

$\Delta \mathrm{V}=R_{\mathrm{ST}}{ }^{*} / \mathrm{IN}(3)$

1 Package Outlines

1) Typical

Metal surface min. $X=7.25, Y=6.9$
All metal surfaces tin plated, except area of cut.
GPT09085
Figure 1
PG-TO263-3-2

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pbfree finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

Smart Low Side Power Switch HITFET BTS 141TC

2 Revision History

Version	Date	Changes
Rev. 1.0	$2009-07-20$	released initial Datasheet

Edition 2009-07-20

Published by
Infineon Technologies AG
81726 Munich, Germany
© Infineon Technologies AG 2009.

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC25051YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR SIP32510DT-T1-GE3 NCP333FCT2G BTS3050TFATMA1

NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12

[^0]: 1 In case of thermal shutdown a minimum sensor holding current of $500 \mu \mathrm{~A}$ has to be guaranteed (see also page 3).
 ${ }^{2} V_{\text {Loaddump }}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
 3 Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for Drain connection.
 PCB mounted vertical without blown air

[^1]: 1 If the input current is limited by external components, low drain currents can flow and heat the device.

[^2]: ${ }^{1}$ Device switched on into existing short circuit (see diagram Determination of I $D(\lim)$). If the device is in on condition and a short circuit occurs, these values might be exceeded for max. $50 \mu \mathrm{~s}$.
 2Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation

