Features

- Logic Level Input
- Input Protection (ESD)
- Thermal shutdown
- Green product (RoHS compliant)
- Overload protection
- Short circuit protection
- Overvoltage protection
- Current limitation
- Analog driving possible

Product Summary

Drain source voltage	V_{DS}	42	V
On-state resistance	$R_{\mathrm{DS}(\mathrm{on})}$	50	$\mathrm{~m} \Omega$
Nominal load current	$I_{\mathrm{D}(\mathrm{Nom})}$	3	A
Clamping energy	E_{AS}	500	mJ

Application

- All kinds of resistive, inductive and capacitive loads in switching or linear applications
- $\mu \mathrm{C}$ compatible power switch for 12 V DC applications
- Replaces electromechanical relays and discrete circuits

General Description

N channel vertical power FET in Smart SIPMOS ${ }^{\circledR}$ technology. Fully protected by embedded protection functions.

Maximum Ratings at $\mathbf{T}_{\mathrm{j}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Drain source voltage	$V_{\text {DS }}$	42	V
Drain source voltage for short circuit protection $T_{\mathrm{j}}=-40 \ldots 150^{\circ} \mathrm{C}$	$V_{\text {DS(SC) }}$	30	
Continuous input current $\begin{aligned} & -0.2 \mathrm{~V} \leq V_{\text {IN }} \leq 10 \mathrm{~V} \\ & V_{\text {IN }}<-0.2 \mathrm{~V} \text { or } V_{\text {IN }}>10 \mathrm{~V} \end{aligned}$	${ }_{1 / 2}$	no limit $\left\|\iota_{\mathbb{N}}\right\| \leq 2$	mA
Operating temperature	T_{j}	-40 ... +150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	-55 ... +150	
Power dissipation $T_{\mathrm{C}}=85^{\circ} \mathrm{C}$	$P_{\text {tot }}$	3.8	W
Unclamped single pulse inductive energy ${ }^{1)}$	$E_{\text {AS }}$	500	mJ
Load dump protection $V_{\text {LoadDump }}{ }^{2)}=V_{\mathrm{A}}+V_{\mathrm{S}}$ $V_{\mathrm{IN}}=0$ and $10 \mathrm{~V}, \mathrm{t}_{\mathrm{d}}=400 \mathrm{~ms}, R_{\mathrm{I}}=2 \Omega$, $R_{\mathrm{L}}=4.5 \Omega, V_{\mathrm{A}}=13.5 \mathrm{~V}$	$V_{\text {LD }}$	53.5	V
Electrostatic discharge voltage (Human Body Model) according to MIL STD 883D, method 3015.7 and EOS/ESD assn. standard S5.1-1993	$V_{\text {ESD }}$	2	kV

Thermal resistance

junction - ambient:	$R_{\text {thJA }}$		K/W
@ min. footprint $@ 6 \mathrm{~cm}^{2}$ cooling area 3)		125 72	
junction-soldering point:	$R_{\text {thJS }}$	17	K/W

[^0]
Electrical Characteristics

Parameter at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics					
Drain source clamp voltage $T_{j}=-40 \ldots+150, I_{D}=10 \mathrm{~mA}$	$V_{\text {DS(AZ) }}$	42	-	55	V
Off-state drain current $T_{j}=-40 \ldots+150^{\circ} \mathrm{C}$ $V_{\mathrm{DS}}=32 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$	IDSs	-	1.5	10	$\mu \mathrm{A}$
Input threshold voltage $\begin{aligned} & I_{\mathrm{D}}=1.4 \mathrm{~mA}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & I_{\mathrm{D}}=1.4 \mathrm{~mA}, T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {IN(th }}$	$\begin{aligned} & 1.3 \\ & 0.8 \end{aligned}$	1.7	2.2	V
On state input current	$I_{\text {IN(on) }}$	-	10	30	$\mu \mathrm{A}$
On-state resistance $\begin{aligned} & V_{\mathrm{IN}}=5 \mathrm{~V}, I_{\mathrm{D}}=3 \mathrm{~A}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{IN}}=5 \mathrm{~V}, I_{\mathrm{D}}=3 \mathrm{~A}, T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$R_{\text {DS(on) }}$	-	$\begin{aligned} & 45 \\ & 75 \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ 100 \\ \hline \end{gathered}$	$\mathrm{m} \Omega$
On-state resistance $\begin{aligned} & V_{I N}=10 \mathrm{~V}, I_{\mathrm{D}}=3 \mathrm{~A}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & V_{I N}=10 \mathrm{~V}, I_{\mathrm{D}}=3 \mathrm{~A}, T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$R_{\text {DS(on) }}$	-	$\begin{aligned} & 35 \\ & 65 \end{aligned}$	$\begin{aligned} & 50 \\ & 90 \end{aligned}$	
Nominal load current $V_{\mathrm{DS}}=0.5 \mathrm{~V}, T_{\mathrm{j}}<150^{\circ} \mathrm{C}, V_{\mathrm{IN}}=10 \mathrm{~V}, T_{\mathrm{A}}=85^{\circ} \mathrm{C}$	${ }_{\text {L }}$ (Nom)	3	-	-	A
Current limit (active if $V_{\mathrm{DS}}>2.5 \mathrm{~V}$) ${ }^{1}$) $V_{\mathrm{IN}}=10 \mathrm{~V}, V_{\mathrm{DS}}=12 \mathrm{~V}, t_{\mathrm{m}}=200 \mu \mathrm{~s}$	$1{ }^{\prime}$ (lim)	18	24	30	

${ }^{1}$ Device switched on into existing short circuit (see diagram Determination of $\mathrm{l}_{\mathrm{D}}(\mathrm{lim})$). If the device is in on condit and a short circuit occurs, these values might be exceeded for max. $50 \mu \mathrm{~s}$.

Electrical Characteristics

| Parameter |
| :--- | :---: | :---: | :---: | :---: | :---: |
| at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified |\quad Symbol | Values |
| :---: |
| Unit |

Dynamic Characteristics

Turn-on time $\quad V_{\mathrm{IN}}$ to $90 \% I_{\mathrm{D}}:$	t_{on}	-	60	100	$\mu \mathrm{~s}$
$R_{\mathrm{L}}=4.7 \Omega, V_{\mathrm{IN}}=0$ to $10 \mathrm{~V}, V_{\mathrm{bb}}=12 \mathrm{~V}$					
Turn-off time V_{IN} to $10 \% I_{\mathrm{D}}:$					
$R_{\mathrm{L}}=4.7 \Omega, V_{\mathrm{IN}}=10$ to $0 \mathrm{~V}, V_{\mathrm{bb}}=12 \mathrm{~V}$	$t_{\text {off }}$	-	60	100	
Slew rate on 70 to $50 \% V_{\mathrm{bb}}:$	$-\mathrm{dV}_{\mathrm{DS}} / \mathrm{dt}_{\text {on }}$	-	0.3	1.5	$\mathrm{~V} / \mu \mathrm{s}$
$R_{\mathrm{L}}=4.7 \Omega, V_{\mathrm{IN}}=0$ to $10 \mathrm{~V}, V_{\mathrm{bb}}=12 \mathrm{~V}$					
Slew rate off 50 to $70 \% V_{\mathrm{bb}}:$					
$R_{\mathrm{L}}=4.7 \Omega, V_{\mathrm{IN}}=10$ to $0 \mathrm{~V}, V_{\mathrm{bb}}=12 \mathrm{~V}$	$\mathrm{dV}_{\mathrm{DS}} / \mathrm{dt}_{\text {off }}$	-	0.7	1.5	

Protection Functions ${ }^{1)}$

Thermal overload trip temperature	T_{jt}	150	175	-	${ }^{\circ} \mathrm{C}$
Input current protection mode	$I_{\mathrm{IN}(\text { Prot })}$	80	160	300	$\mu \mathrm{~A}$
Input current protection mode $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$	$I_{\mathrm{IN}(\text { Prot })}$	-	130	300	
Unclamped single pulse inductive energy $\left.{ }^{2}\right)$ $I_{\mathrm{D}}=3 \mathrm{~A}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}, V_{\mathrm{bb}}=12 \mathrm{~V}$	E_{AS}	500	-	-	mJ

Inverse Diode

Inverse diode forward voltage $t_{\mathrm{F}}=15 \mathrm{~A}, t_{\mathrm{m}}=250 \mu \mathrm{~s}, V_{\mathrm{IN}}=0 \mathrm{~V}$, $t_{\mathrm{P}}=300 \mu \mathrm{~s}$	V_{SD}	-	1	-	V

[^1]
Block diagram

Terms

Input circuit (ESD protection)

Inductive and overvoltage output clamp

Short circuit behaviour

1 Maximum allowable power dissipation
$P_{\text {tot }}=f\left(T_{S}\right)$ resp.
$P_{\text {tot }}=f\left(T_{A}\right) @ R_{\text {thJA }}=\mathbf{7 2} \mathrm{K} / \mathbf{W}$

3 On-state resistance
$R_{O N}=f\left(T_{j}\right) ; I_{D}=3 A ; V_{I N}=5 V$

2 On-state resistance
$R_{O N}=f\left(T_{j}\right) ; I_{D}=3 A ; V_{I N}=10 \mathrm{~V}$

4 Typ. input threshold voltage
$\mathrm{V}_{\mathrm{IN}(\mathrm{th})}=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right) ; I_{\mathrm{D}}=0.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V}$

5 Typ. transfer characteristics
$\mathrm{I}_{\mathrm{D}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{IN}}\right) ; \mathrm{V}_{\mathrm{DS}}=12 \mathrm{~V} ; \mathrm{T}_{\text {Jstart }}=25^{\circ} \mathrm{C}$

7 Typ. output characteristics
$\mathrm{I}_{\mathrm{D}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{DS}}\right) ; \mathrm{T}_{\text {Jstart }}=25^{\circ} \mathrm{C}$
Parameter: V_{IN}

6 Typ. short circuit current
$I_{D(\lim)}=f\left(T_{j}\right) ; V_{D S}=12 \mathrm{~V}$
Parameter: V_{IN}

8 Typ. off-state drain current $l_{\text {DSS }}=f\left(T_{j}\right)$

9 Typ. overload current

$I_{D(\lim)}=f(t), V_{b b}=12 \mathrm{~V}$, no heatsink
Parameter: $T_{\text {jstart }}$

10 Typ. transient thermal impedance $Z_{\text {thJA }}=f\left(t_{p}\right) @ 6 \mathbf{c m}^{2}$ cooling area Parameter: $D=t_{\mathrm{p}} / T$

11 Determination of $I_{D \text { (lim) }}$

$I_{D(\lim)}=f(t) ; t_{m}=200 \mu \mathrm{~s}$
Parameter: $T_{\text {Jstart }}$

Package Outlines

1 Package Outlines

Figure 1 PG-SOT223-4 (Plastic Green Small Outline Transistor Package)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pbfree finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Please specify the package needed (e.g. green package) when placing an order

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

2 Revision History

Version	Date	Changes
Rev. 1.3	$2008-04-14$	Package information updated to SOT223-4
Rev. 1.2	2007-03-28	released automotive green version Package parameter (humidity and climatic) removed in Maximum ratings AEC icon added RoHS icon added Green product (RoHS-compliant) added to the feature list Package information updated to green Green explanation added
Rev. 1.1	2004-02-02	released production version

Edition 2008-04-14

Published by
Infineon Technologies AG
81726 Munich, Germany
© Infineon Technologies AG 2008.

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Infineon manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P MC15XS3400DHFKR2 FPF1015 FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2 NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073

[^0]: 1 Not tested, specified by design.
 ${ }^{2} V_{\text {Loaddump }}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
 ${ }^{3}$ Device on $50 \mathrm{~mm}^{*} 50 \mathrm{~mm}^{*} 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for drain connection. PCB mounted vertical without blown air.

[^1]: ${ }^{1}$ Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.
 2 Not tested, specified by design.

