Smart High-Side Power Switch

Features

- Overload protection
- Current limitation
- Short circuit protection
- Thermal shutdown with restart
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads
- Reverse battery protection with external resistor
- Open drain diagnostic output for overtemperature and short circuit
- Open load detection in OFF - State

Product Summary

Overvoltage protection	$V_{\mathrm{bb}(\mathrm{AZ})}$	62	V
Operating voltage	$V_{\mathrm{bb}(\mathrm{on})}$	$6 \ldots 52$	V
On-state resistance	R_{ON}	200	$\mathrm{~m} \Omega$
Nominal load current	$\mathrm{L}_{\mathrm{L}(\mathrm{ISO})}$	1.8	A

PG-TO252-5-11 with external resistor

- CMOS compatible input
- Loss of GND and loss of $V_{b b}$ protection
- ESD - Protection
- Very low standby current
- Green product (RoHS-compliant)

Application

- All types of resistive, inductive and capacitive loads
- $\mu \mathrm{C}$ compatible power switch for $12 \mathrm{~V}, 24 \mathrm{~V}$ and 42 V DC applications
- Replaces electromechanical relays and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS ${ }^{\circledR}$ technology. Providing embedded protective functions.

Block Diagram

Pin	Symbol	Function
1	GND	Logic ground
2	IN	Input, activates the power switch in case of logic high signal
3	Vbb	Positive power supply voltage
4	ST	Diagnostic feedback
5	OUT	Output to the load
TAB	Vbb	Positive power supply voltage

Pin configuration

Maximum Ratings at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Supply voltage	$V_{\text {bb }}$	52	V
Supply voltage for full short circuit protection	$V_{\mathrm{bb}(\mathrm{SC})}$	50	
Continuous input voltage	$V_{\text {IN }}$	$-10 \ldots+16$	
Load current (Short - circuit current, see page 5)	I_{L}	self limited	A
Current through input pin (DC)	$I_{\text {IN }}$	± 5	mA
Operating temperature	T_{j}	-40 ... +150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	$-55 \ldots+150$	
Power dissipation ${ }^{1)}$	$P_{\text {tot }}$	41.6	W
Inductive load switch-off energy dissipation 1)2) single pulse, (see page 9) $\mathrm{Tj}=150^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$	$E_{\text {AS }}$	150	mJ
Load dump protection ${ }^{2)} V_{\text {LoadDump }}{ }^{3)}=V_{A}+V_{S}$ $R_{\mathrm{l}}=2 \Omega, t_{\mathrm{d}}=400 \mathrm{~ms}, V_{\mathrm{IN}}=$ low or high, $V_{\mathrm{A}}=13.5 \mathrm{~V}$ $R_{\mathrm{L}}=13.5 \Omega$ $R_{\mathrm{L}}=27 \Omega$	$V_{\text {Loaddump }}$	$\begin{aligned} & 73.5 \\ & 88.5 \end{aligned}$	V
Electrostatic discharge voltage (Human Body Model) according to ANSI EOS/ESD - S5.1-1993 ESD STM5.1-1998 Input pin all other pins	$V_{\text {ESD }}$	$\begin{aligned} & \pm 1 \\ & \pm 5 \end{aligned}$	kV

Thermal Characteristics

junction - case:	$R_{\text {thJC }}$	-	-	3	K/W
Thermal resistance @ min. footprint	$R_{\text {th }(\mathrm{JA})}$	-	80	-	K/W
Thermal resistance @ $6 \mathrm{~cm}^{2}$ cooling area 1)	$R_{\text {th(JA })}$	-	45	60	

[^0]
Electrical Characteristics

Parameter and Conditions	Symbol	Values			Unit
at $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=12.42 \mathrm{~V}$, unless otherwise specified		min.	typ.	max.	

Load Switching Capabilities and Characteristics

On-state resistance $\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C}, I_{\mathrm{L}}=1 \mathrm{~A}, V_{\mathrm{bb}}=9 \ldots 52 \mathrm{~V} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$R_{\text {ON }}$	-	$\begin{aligned} & 150 \\ & 270 \end{aligned}$	$\begin{aligned} & 200 \\ & 380 \end{aligned}$	$\mathrm{m} \Omega$
Nominal load current; Device on PCB 1) $T_{\mathrm{C}}=85^{\circ} \mathrm{C}, V_{\mathrm{ON}}=0.5 \mathrm{~V}$	$I_{\text {L(ISO) }}$	1.8	2.2	-	A
Turn-on time to $90 \% V_{\text {OUT }}$ $R_{\mathrm{L}}=47 \Omega$	$t_{\text {on }}$	-	80	180	$\mu \mathrm{s}$
Turn-off time to $10 \% V_{\text {OUT }}$ $R_{\mathrm{L}}=47 \Omega$	$t_{\text {off }}$	-	80	200	
Slew rate on 10 to $30 \% V_{\text {OUT }}$, $R_{\mathrm{L}}=47 \Omega, V_{\mathrm{bb}}=13.5 \mathrm{~V}$	$d V / d t_{\text {on }}$	-	0.7	2	$\mathrm{V} / \mathrm{\mu s}$
Slew rate off 70 to $40 \% \mathrm{~V}_{\text {OUT }}$, $R_{\mathrm{L}}=47 \Omega, V_{\mathrm{bb}}=13.5 \mathrm{~V}$	$-d V / d t_{\text {off }}$	-	0.9	2	

Operating Parameters

Operating voltage	$V_{\text {bb(on) }}$	6	-	52	V
Undervoltage shutdown of charge pump $\begin{aligned} & T_{\mathrm{j}}=-40 \ldots+85^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {bb(under) }}$	-	-	4 5.5	
Undervoltage restart of charge pump	$V_{\mathrm{bb}}(\mathrm{ucp})$	-	4	5.5	
Standby current $\begin{aligned} & T_{\mathrm{j}}=-40 \ldots+85^{\circ} \mathrm{C}, V_{\mathrm{IN}}=\text { low } \\ & \left.T_{\mathrm{j}}=+150^{\circ} \mathrm{C} 2\right), V_{\mathrm{IN}}=\text { low } \end{aligned}$	$l_{\text {bb(off) }}$	-	-	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\mu \mathrm{A}$
Leakage output current (included in $I_{\mathrm{bb}(\text { (ff) }}$) $V_{\text {IN }}=$ low	${ }_{L}$ (off)	-	-	5	
Operating current $V_{\mathrm{IN}}=\text { high }$	$I_{\text {GND }}$	-	0.8	2	mA

[^1]
Electrical Characteristics

Parameter and Conditions

at $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=12 . .42 \mathrm{~V}$, unless otherwise specified

Symbol	Values			Unit
	min.	typ.	max.	

Protection Functions ${ }^{1)}$

Initial peak short circuit current limit (pin 3 to 5)
$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}, V_{\mathrm{bb}}=20 \mathrm{~V}, t_{\mathrm{m}}=150 \mu \mathrm{~s}$
$T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
$T_{\mathrm{j}}=150^{\circ} \mathrm{C}$
$T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, V_{b b}>40 \mathrm{~V}$, (see page 12)
Repetitive short circuit current limit
$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{jt}}$ (see timing diagrams)
$V_{\mathrm{bb}}<40 \mathrm{~V}$
$V_{b b}>40 \mathrm{~V}$
Output clamp (inductive load switch off)
at $V_{\mathrm{OUT}}=V_{\mathrm{bb}}-V_{\mathrm{ON}(\mathrm{CL})}$,
$l_{\mathrm{bb}}=4 \mathrm{~mA}$
Overvoltage protection ${ }^{3)}$
$I_{\mathrm{bb}}=4 \mathrm{~mA}$

Thermal overload trip temperature	$T_{\text {jt }}$	150	-	-	${ }^{\circ} \mathrm{C}$
Thermal hysteresis	$\Delta T_{\text {jt }}$	-	10	-	K

Reverse Battery

Reverse battery $\left.{ }^{4}\right)$	$-V_{\mathrm{bb}}$	-	-	52	V
Drain-source diode voltage $\left(V_{\mathrm{OUT}}>V_{\mathrm{bb}}\right)$ $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$	$-V_{\mathrm{ON}}$	-	600	-	mV

[^2]
Electrical Characteristics

Parameter and Conditions	Symbol	Values			Unit
at $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=12 . .42 \mathrm{~V}$, unless otherwise specified		min.	typ.	max.	

Input and Status feedback

Input turn-on threshold voltage	$V_{\text {IN(T+) }}$	-	-	2.2	V
Input turn-off threshold voltage	$V_{\text {IN(T-) }}$	0.8	-	-	
Input threshold hysteresis	$\Delta V_{\operatorname{IN}(\mathrm{T})}$	-	0.4	-	
Off state input current $V_{\mathrm{IN}}=0.7 \mathrm{~V}$	$I_{\text {IN(off) }}$	1	-	25	$\mu \mathrm{A}$
On state input current $V_{\mathrm{IN}}=5 \mathrm{~V}$	$I_{\text {IN (on) }}$	3	-	25	
Status output (open drain), Zener limit voltage $I_{\mathrm{ST}}=1.6 \mathrm{~mA}$	$V_{\text {ST }}$ (high)	5.4	6.1	-	V
Status output (open drain), ST low voltage $\begin{aligned} & T_{\mathrm{j}}=-40 \ldots+25^{\circ} \mathrm{C}, I_{\mathrm{ST}}=1.6 \mathrm{~mA} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C}, I_{\mathrm{ST}}=1.6 \mathrm{~mA} \end{aligned}$	$V_{\text {ST(low) }}$	-	-	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	
Status invalid after positive input slope 1) $V_{\mathrm{bb}}=20 \mathrm{~V}$	$t_{\mathrm{d}(\mathrm{ST}+)}$	-	120	160	μs
Status invalid after negative input slope 1)	$t_{\text {d(ST-) }}$	-	250	400	
Input resistance (see page 8)	R_{1}	2	3.5	5	$\mathrm{k} \Omega$

Diagnostic Characteristics

Short circuit detection voltage	$V_{\mathrm{OUT}(\mathrm{SC})}$	-	2.8	-	V
Open load detection voltage ${ }^{2)}$	$V_{\mathrm{OUT}(\mathrm{OL})}$	-	3	4	
Internal output pull down${ }^{3}$)	R_{O}	65	200	750	$\mathrm{k} \Omega$
(see page 9 and 14) $V_{\mathrm{OUT}(\mathrm{OL})}=4 \mathrm{~V}$					

[^3]| | Input
 level | Output
 level | Status |
| :--- | :---: | :---: | :---: |
| Normal | L | L | H |
| operation | H | H | H |
| Short circuit | L | L | H |
| to GND | H | L * | L |
| Short circuit to | L | H | L |
| $V_{\text {bb (in off-state) }}$ | H | H | H |
| Overload | L | L | H |
| | H | H** | H |
| Overtemperature | L | L | H |
| | H | L | L |
| Open Load in | L | Z | H (Li) $)$ |
| off-state | H | H | H |

*) Out ="L": $V_{\text {OUT }}<2.8 \mathrm{~V}$ typ.
**) Out ="H": V
$\mathrm{Z}=$ high impedance, potential depends on external circuit

Terms

Input circuit (ESD protection)

The use of ESD zener diodes as voltage clamp at DC conditions is not recommended

Reverse battery protection

$R_{G N D}=150 \Omega, R_{I}=3.5 \mathrm{k} \Omega$ typ.,
Temperature protection is not active during inverse current

Inductive and overvoltage output clamp

VON clamped to 59 V min.

Overvoltage protection of logic part

$\mathrm{V}_{\mathrm{Z} 1}=6.1 \mathrm{~V}$ typ., $\mathrm{V}_{\mathrm{Z2}}=\mathrm{V}_{\mathrm{bb}(\mathrm{AZ})}=62 \mathrm{~V}$ min., $\mathrm{R}_{\mathrm{l}}=3.5 \mathrm{k} \Omega$ typ., $\mathrm{R}_{\mathrm{GND}}=150 \Omega$

Status output

Open-load detection

OFF-state diagnostic condition:

V_{bb} disconnect with charged inductive load

GND disconnect

GND disconnect with GND pull up

Inductive Load switch-off energy
dissipation

Energy stored in load inductance: $E=1 / 2 * L * L^{2}$
While demagnetizing load inductance,
the enérgy dissipated in PROFET is
$E_{A S}=E_{b b}+E_{L}-E_{R}=V_{O N(C L)}{ }^{*} \mathrm{i}_{\mathrm{L}}(\mathrm{t}) \mathrm{dt}$,
with an approximate solution for $R_{L}>0 \Omega$:
$E_{A S}=\frac{I_{L} * L^{2}}{2 * R_{L}} *\left(V_{b b+}|\operatorname{VouT}(C L)|\right) * \ln \left(1+\frac{I_{L} * R_{L}}{|\operatorname{Vout}(C L)|}\right)$

Typ. transient thermal impedance
$Z_{\text {thJA }}=f\left(t_{p}\right) @ 6 \mathbf{c m}^{2}$ heatsink area
Parameter: $D=t_{\mathrm{p}} / T$

Typ. on-state resistance
$R_{\mathrm{ON}}=\mathbf{f}\left(T_{\mathbf{j}}\right) ; V_{\mathrm{bb}}=13.5 \mathrm{~V} ; V_{\mathrm{in}}=$ high

Typ. transient thermal impedance
$Z_{\text {thJA }}=f\left(t_{p}\right) @$ min. footprint
Parameter: $D=t_{\mathrm{p}} / T$

Typ. on-state resistance
$\boldsymbol{R}_{\mathrm{ON}}=\mathrm{f}\left(\boldsymbol{V}_{\mathrm{bb}}\right) ; I_{\mathrm{L}}=1 \mathrm{~A} ; V_{\text {in }}=$ high

Typ. turn on time
$t_{\text {on }}=\mathbf{f}\left(T_{\mathrm{j}}\right) ; R_{\mathrm{L}}=47 \Omega$

Typ. slew rate on
$d V / d t_{\text {on }}=\mathbf{f}\left(T_{\mathbf{j}}\right) ; R_{\mathrm{L}}=47 \Omega$

Typ. turn off time
$t_{\text {off }}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; R_{\mathrm{L}}=47 \Omega$

Typ. slew rate off
$d V / d t_{\text {off }}=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right) ; R_{\mathrm{L}}=47 \Omega$

Typ. standby current
$I_{\mathrm{bb}(\mathrm{off})}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; V_{\mathrm{bb}}=42 \mathrm{~V} ; V_{\mathrm{IN}}=$ low

Typ. initial peak short circuit current limit $I_{L(S C p)}=f\left(V_{b b}\right)$

Typ. leakage current
$I_{\mathrm{L}(\mathrm{off})}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; V_{\mathrm{bb}}=42 \mathrm{~V} ; V_{\mathrm{IN}}=$ low

Typ. initial short circuit shutdown time
$\left.\boldsymbol{t}_{\text {off(}} \mathbf{S C}\right)=\mathrm{f}\left(T_{\mathrm{j}, \text { start }}\right) ; V_{\mathrm{bb}}=20 \mathrm{~V}$

Typ. input current

$I_{\mathrm{IN}(\mathrm{on} / \mathrm{off})}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; V_{\mathrm{bb}}=13.5 \mathrm{~V} ; V_{\mathrm{IN}}=\operatorname{low} / \mathrm{high}$ $V_{\text {INlow }} \leq 0.7 \mathrm{~V} ; V_{\text {INhigh }}=5 \mathrm{~V}$

Typ. input threshold voltage
$V_{\mathrm{IN}(\mathrm{th})}=\mathrm{f}\left(\mathrm{T}_{\mathrm{j}}\right) ; V_{\mathrm{bb}}=13.5 \mathrm{~V}$

Typ. input current
$I_{\mathbf{I N}}=\mathrm{f}\left(\boldsymbol{V}_{\mathrm{IN}}\right) ; V_{\mathrm{bb}}=13.5 \mathrm{~V}$

Typ. input threshold voltage
$V_{\mathrm{IN}(\mathrm{th})}=\mathrm{f}\left(\boldsymbol{V}_{\mathrm{bb}}\right) ; T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Maximum allowable load inductance for a single switch off
$L=\mathrm{f}\left(I_{\mathrm{L}}\right) ; T_{\text {jstart }}=150^{\circ} \mathrm{C}, R_{\mathrm{L}}=0 \Omega$

Maximum allowable inductive switch-off energy, single pulse
$E_{\text {AS }}=f\left(l_{\mathrm{L}}\right) ; T_{\text {jstart }}=150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=13.5 \mathrm{~V}$

Typ. status delay time
$t_{\mathrm{d}(\mathrm{ST}+/-)}=\mathrm{f}\left(\mathrm{V}_{\mathrm{bb}}\right) ; T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Typ. internal output pull down $R_{\mathrm{O}}=\mathrm{f}\left(V_{\mathrm{bb}}\right)$

Timing diagrams

Figure 1a: Vbb turn on:

Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition

ST

Figure 3a: Turn on into short circuit,
shut down by overtemperature, restart by cooling

Heating up of the chip may require several milliseconds, depending on external conditions.

Figure 4: Overtemperature:
Reset if $\mathrm{T}_{\mathrm{j}}<\mathrm{T}_{\mathrm{jt}}$

Figure 3b: Short circuit in on-state
shut down by overtemperature, restart by cooling

Figure 5: Undervoltage restart of charge pump

Figure 7: Overvoltage

Package Outlines

1) Includes mold flashes on each side.

All metal surfaces tin plated, except area of cut.

Figure 1 PG-TO252-5-11 (Plastic Dual Small Outline Package) (RoHS-compliant)

Green Product

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Please specify the package needed (e.g. green package) when placing an order.

You can find all of our packages, sorts of packing and others in our
Infineon Internet Page "Products": http://www.infineon.com/products.

Smart High-Side Power Switch BTS 452R

Revision History

Version	Date	Changes
V1.0	2004-01-27	initial version
V1.1	$2007-01-15$	AEC icon added RoHS icon added Green product (RoHS-compliant) added to the feature list Package information updated to green Green explanation added

Edition 2007-01-15

Published by
Infineon Technologies AG
81726 Munich, Germany
© Infineon Technologies AG 2007.

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC25051YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR SIP32510DT-T1-GE3 NCP333FCT2G BTS3050TFATMA1

NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12

[^0]: ${ }^{1}$ Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with 6 cm 2 (one layer, $70 \mu \mathrm{~m}$ thick) copper area for drain connection. PCB is vertical without blown air.
 2not subject to production test, specified by design
 ${ }^{3} V_{\text {Loaddump }}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839.
 Supply voltages higher than $V_{b b}(A Z)$ require an external current limit for the GND pin, e.g. with a 150Ω resistor in GND connection. A resistor for the protection of the input is integrated.

[^1]: ${ }^{1}$ Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with 6 cm 2 (one layer, $70 \mu \mathrm{~m}$ thick) copper area for drain connection. PCB is vertical without blown air.
 2higher current due temperature sensor

[^2]: ${ }^{1}$ Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range.
 Protection functions are not designed for continuous repetitive operation.
 2not subject to production test, specified by design
 3 see also $\mathrm{V}_{\mathrm{ON}(\mathrm{CL})}$ in circuit diagram on page 8
 4^{4} Requires a 150Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3).

[^3]: ${ }^{1}$ no delay time after overtemperature switch off and short circuit in on-state
 ${ }^{2}$ External pull up resistor required for open load detection in off state.
 $3^{\text {not subject to production test, specified by design }}$

