Smart High-Side Power Switch
 Two Channels: $2 \times 25 \mathrm{~m} \Omega$ IntelliSense

Product Summary

Operating voltage	$V_{\mathrm{bb}(\mathrm{on})}$	$4,5 \ldots 28$ (Loaddump: 40 V)		V
Active		channels	one	two parallel

Package

General Description

- N channel vertical power MOSFET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS ${ }^{\circledR}$ technology.
- Providing embedded protective functions.
- Extern adjustable current limitation.

Application

- All types of resistive, inductive and capacitive loads
- $\mu \mathrm{C}$ compatible high-side power switch with diagnostic feedback for 12 V grounded loads
- Due to the adjustable current limitation best suitable for loads with high inrush currents, so as lamps
- Replaces electromechanical relays, fuses and discrete circuits

Basic Functions

- Very low standby current
- CMOS compatible input
- Improved electromagnetic compatibility (EMC)
- Stable behaviour at low battery voltage

Protection Functions

- Reverse battery protection with external resistor
- Short circuit protection
- Overload protection
- Current limitation
- Thermal Shutdown
- Overvoltage protection with external resistor
- Loss of GND and loss of V_{bb} protection

Block Diagram

- Electrostatic discharge Protection (ESD)

Diagnostic Function: IntelliSense

- Proportional load current sense (with defined fault signal during thermal shutdown and overload)
- Additional open load detection in OFF - state
- Suppressed thermal toggling of fault signal

Functional diagram

BTS 5240G

Pin definition and function

Pin	Symbol	Function
4	IN1	Input 1,2 activates channel1,2 in case of logic high signal
7	IN2	
5	IS1	Diagnostic feedback 1 \& 2 of channel 1,2 On state: advanced current sense with defined signal in case of overload or short circuit Off state: High on failure
6	IS2	
3	GND 1/2	Ground of chip
$\begin{aligned} & 1,10 \\ & 11,15 \\ & 16,20 \end{aligned}$	V_{bb}	Positive power supply voltage. Design the wiring for the simultaneous max. short circuit currents from channel 1 to 2 and also for low thermal resistance
8	CLA	Current limit adjust, the current limit for both channels can be chosen as high (potential < 2V) or low (potential > 4V).
17,18,19	OUT1	Output 1,2 protected high-side power output of channel 1,2. Design the wiring for the max. short circuit current.
12,13,14	OUT2	
2,9	N.C.	Not connected

Pin configuration

(top view)			
V_{bb}	$1 \bullet$	20	$V_{b b}$
N.C.	2	19	OUT1
GND ½	3	18	OUT1
IN1	4	17	OUT1
IS1	5	16	V_{bb}
IS2	6	15	V_{bb}
IN2	7	14	OUT2
CLA $1 / 2$	8	13	OUT2
N.C.	-	12	OUT2
V_{bb}	10	11	V_{bb}

Maximum Ratings at $T_{\mathrm{i}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Supply voltage (overvoltage protection see page 6)	V_{bb}	281)	V
Supply voltage for full short circuit protection; $T_{\mathrm{i}}=-40 \ldots 150^{\circ} \mathrm{C}$	$V_{\mathrm{bb}(\mathrm{SC})}$	282)	
Maximum voltage across DMOS	V_{ON}	52	
$\begin{aligned} & \text { Load dump protection }{ }^{3)} V_{\text {LoadDump }}=V_{\mathrm{A}}+V_{\mathrm{S}} ; V_{\mathrm{A}}=13,5 \mathrm{~V} \\ & \text { In }=\text { low or high; } t_{\mathrm{d}}=400 \mathrm{~ms} ; R_{\mathrm{l}}^{4)}=2 \Omega \\ & R_{\mathrm{L}}=2.25 \Omega \\ & R_{\mathrm{L}}=6.8 \Omega \end{aligned}$	$V_{\text {Loaddump }}$	$\begin{array}{r} 40 \\ 53 \\ \hline \end{array}$	
Load current (Short - circuit current, see page 7)	I_{L}	L(lim) ${ }^{5}$	A
Operating temperature range	T_{j}	$-40 \ldots+150$	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	$-55 \ldots+150$	
Dynamical temperature rise at switching	$d T$	60	K
Power dissipation6) (DC), one channel active $T_{\text {A }}=85^{\circ} \mathrm{C}$	$P_{\text {tot }}$	1,4	W
Maximal switchable inductance, single pulse $V_{b b}=12 \mathrm{~V}, T_{\text {jstart }}=150^{\circ} \mathrm{C}$; (see diagrams on page 12) $\Lambda_{\mathrm{L}}=6 \mathrm{~A}, E_{\mathrm{AS}}=0.319 \mathrm{~J}, R_{\mathrm{L}}=0 \Omega$, one channel: $\Lambda_{\mathrm{L}}=12 \mathrm{~A}, E_{\mathrm{AS}}=0.679 \mathrm{~J}, R_{\mathrm{L}}=0 \Omega$, two parallel channels:	$\mathrm{Z}_{\mathrm{L} \text { (s) }}$	$\begin{aligned} & 9.8 \\ & 5.2 \end{aligned}$	mH
Electrostatic discharge voltage IN: (Human Body Model) IS: according to ANSI EOS/ESD - S5.1-1993, ESD STM5.1-1998 OUT:	$V_{\text {ESD }}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$	kV
Continuous input voltage	$V_{\text {IN }}$	-10... 16	V
Voltage at current limit adjustment pin	$V_{\text {CLA }}$	-10... 16	
Current limit adjustment current	$I_{\text {CLA }}$	± 5.0	mA
Current through input pin (DC)	$I_{\text {IN }}$	± 5.0	
Current through sense (DC) (see page 11)	$I_{\text {IS }}$	-5... 10	

118... 28 V for 100 hours

2only single pulse, $R_{\mathrm{L}}=200 \mathrm{~m} \Omega ; L=8 \mu \mathrm{H} ; \mathrm{R}$ and L are describing the complete circuit impedance including line, contact and generator impedances.
${ }^{3}$ Supply voltage higher than $V_{b b}(A Z)$ require an external current limit for the GND (150Ω resistor) and sense pin. ${ }^{4} R_{\mathrm{I}}=$ internal resistance of the load dump test pulse generator.
${ }^{5}$ Current limit is a protection function. Operation in current limitation is considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.
6^{6} Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with 6 cm 2 (one layer, $70 \mu \mathrm{~m}$ thick) copper area for V_{bb} connection. PCB is vertical without blown air.

Electrical Characteristics

Parameter and Conditions, each of the two channels	Symbol	Values			Unit
at $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=9 \ldots 16 \mathrm{~V}$, unless otherwise specified		min.	typ.	max.	

Thermal Resistance

junction - soldering point	each channel:	$R_{\text {thJS }}$	-	18	-	K/W
junction - ambient ${ }^{1}$)	one channel active: all channels active:	$R_{\text {thJA }}$	-	$\begin{aligned} & 44 \\ & 42 \end{aligned}$	-	K/W

Load Switching Capabilities and Characteristics

On-state resistance (V_{bb} to OUT), (see page 13) $T_{\mathrm{j}}=25^{\circ} \mathrm{C}, L_{\mathrm{L}}=5 \mathrm{~A}$, each channel: $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$, each channel: $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, two parallel channels:	$R_{\text {ON }}$		$\begin{aligned} & 21 \\ & 42 \\ & 11 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \\ & 13 \end{aligned}$	$\mathrm{m} \Omega$
Nominal load current ${ }^{1)}$ $T_{\mathrm{a}}=85^{\circ} \mathrm{C}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}, \quad$ one channel active: two channels active, per channel:	$I_{\text {L(nom) }}$	$\begin{aligned} & 5.4 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 4.2 \end{aligned}$	-	A
Output voltage drop limitation at small load currents $I_{\mathrm{L}}=0.5 \mathrm{~A}$	$V_{\text {ON(NL) }}$	-	40	-	mV
Output current while GND disconnected ${ }^{2}$) (see diagram page 12) $V_{\mathrm{IN}}=0 \mathrm{~V}$	1 L(GNDhigh)	-	-	2	mA

[^0]
Electrical Characteristics

Parameter and Conditions, each of the two channels	Symbol	Values			Unit
	at $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=9 \ldots 16 \mathrm{~V}$, unless otherwise specified		min.	typ.	max.

Load Switching Capabilities and Characteristics

$\begin{aligned} & \text { Turn-on time }{ }^{1)} \quad \text { to } 90 \% V_{\text {OUT }} \\ & R_{\mathrm{L}}=12 \Omega, V_{\mathrm{bb}}=12 \mathrm{~V} \end{aligned}$	$t_{\text {on }}$	-	90	200	$\mu \mathrm{s}$
Turn-off time ${ }^{1)}$ to $10 \% v_{\text {OUT }}$ $R_{\mathrm{L}}=12 \Omega, \mathrm{~V}_{\mathrm{bb}}=12 \mathrm{~V}$	$t_{\text {off }}$	-	100	220	
Slew rate on ${ }^{1}$) 10 to $30 \% \mathrm{~V}_{\text {OUT }}$, $R_{\mathrm{L}}=12 \Omega, V_{\mathrm{bb}}=12 \mathrm{~V}$	$d V / d t_{\text {on }}$	0.1	0.25	0.45	$\mathrm{V} / \mu \mathrm{s}$
$\begin{aligned} & \text { Slew rate off }{ }^{1)} \quad 70 \text { to } 40 \% \mathrm{~V}_{\mathrm{OUT}}, \\ & R_{\mathrm{L}}=12 \Omega, V_{\mathrm{bb}}=12 \mathrm{~V} \end{aligned}$	$-d V / d t_{\text {off }}$	0.09	0.25	0.4	

Operating Parameters

Operating voltage ${ }^{2}$)	$V_{\mathrm{bb}(\mathrm{on})}$	4.5	-	28	V
Overvoltage protection $I_{\mathrm{bb}}=40 \mathrm{~mA}$	$V_{\mathrm{bb}(\mathrm{AZ})}$	41	47	52	
Standby current ${ }^{4}$)	$I_{\mathrm{bb}(\mathrm{off})}$				$\mu \mathrm{A}$
(see diagram on page 13$)$					
$T_{\mathrm{j}}=-40 \ldots+25^{\circ} \mathrm{C}, V_{\mathrm{IN}}=0 \mathrm{~V}$		-	5	7.5	
$T_{\mathrm{j}}=150^{\circ} \mathrm{C}$		-	-	20	

${ }^{1}$ See timing diagram on page 14.
$2^{2} 18 \mathrm{~V}$... 28 V for 100 hours
${ }^{3}$ Supply voltages higher than $V_{\mathrm{bb}}(\mathrm{AZ})$ require an external current limit for the status pin and GND pin (e.g. 1502).
See also $V_{\text {Out }}(\mathrm{CL})$ in table of protection functions and circuit diagram on page 11.
${ }^{4}$ Measured with load; for the whole device; all channels off.

Electrical Characteristics

Parameter and Conditions, each of the two channels	Symbol	Values			Unit
at at $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=9 \ldots . .16 \mathrm{~V}$, unless otherwise specified		min.	typ.	max.	

Operating Parameters

Off-State output current (included in $\left.I_{\mathrm{bb}(\text { (ff) })}\right)$ $V_{\mathrm{IN}}=0 \mathrm{~V}$, each channel	$I_{\mathrm{L} \text { (off) }}$	-	1.5	8	$\mu \mathrm{~A}$
Operating current 1) $V_{\mathrm{IN}}=5 \mathrm{~V}$, per active channel	I_{GND}	-	1.6	4	mA

Protection Functions ${ }^{2}$)

Current limit, (see timing diagrams, page 15) Low level; if potential at CLA = high High level; if potential at CLA = low	$I_{\text {L(LIM })}$	$\begin{gathered} 7 \\ 40 \end{gathered}$	$\begin{aligned} & 11 \\ & 50 \end{aligned}$	$\begin{aligned} & 14 \\ & 60 \end{aligned}$	A
Current limit adjustment threshold voltage	$\begin{array}{\|l\|} \hline V_{\mathrm{CLA}(\mathrm{~T}-)} \\ V_{\mathrm{CLA}(\mathrm{~T}+)} \\ \hline \end{array}$	2.0		4.0	V
Repetitive short circuit current limit $T_{j}=T_{j t} \quad$ (see timing diagrams on page 15)	$I_{\text {L(SCr })}$		$\begin{gathered} 40 \\ 40 \\ 7 \\ 7 \end{gathered}$		A
Initial short circuit shutdown time $T_{\mathrm{j}, \text { start }}=25^{\circ} \mathrm{C} ; V_{\mathrm{bb}}=13,5 \mathrm{~V}$ high level:	$t_{\text {off(SC) }}$		$\begin{gathered} 3.5 \\ 0.75 \end{gathered}$		ms
Output clamp (inductive load switch off) ${ }^{4)}$ $\mathrm{I}_{\mathrm{L}}=40 \mathrm{~mA}$	$V_{\text {OUT(CL) }}$	-	-15	-	V
Thermal overload trip temperature	$T_{\text {it }}$	150	170	-	${ }^{\circ} \mathrm{C}$
Thermal hysteresis	$\Delta T_{\text {jt }}$	-	10	-	K

${ }^{1}$ Add $/$ IS, if $I_{\text {IS }}>0$
2Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation
${ }^{3}$ At the beginning of the short circuit the double current is possible for a short time.
$4_{\text {If }}$ channels are connected in parallel, output clamp is usually accomplished by the channel with the lowest $V_{\mathrm{OUT}}(\mathrm{CL})$.

Electrical Characteristics

Parameter and Conditions, each of the two channels	Symbol	Values			Unit
at $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=9 \ldots 16 \mathrm{~V}$, unless otherwise specified		min.	typ.	max.	

Diagnostic Characteristics

Open load detection voltage	$V_{\text {OUT(OL) }}$	2	3.2	4.4	V
Internal output pull down ${ }^{1)}$ $V_{\text {OUT }}=13.5 \mathrm{~V}$	$R_{\text {OUT(PD) }}$	11	23	35	$\mathrm{k} \Omega$
Current sense ratio, static on-condition $\begin{aligned} & k_{\text {ILIS }}=I_{\mathrm{L}}: I_{\mathrm{IS}} \\ & I_{\mathrm{L}}=0.5 \mathrm{~A} \\ & I_{\mathrm{L}}=3 \mathrm{~A} \\ & I_{\mathrm{L}}=6 \mathrm{~A} \end{aligned}$	$k_{\text {ILIS }}$	$\begin{aligned} & 4640 \\ & 4900 \\ & 4900 \end{aligned}$	$\begin{aligned} & 5800 \\ & 5400 \\ & 5350 \end{aligned}$	$\begin{aligned} & 6960 \\ & 5900 \\ & 5800 \end{aligned}$	
Sense signal in case of fault-conditions ${ }^{2}$) in off-state	$V_{\text {fault }}$	5	6.2	7.5	V
Current saturation of sense fault signal	$I_{\text {fault }}$	4	-	-	mA
Sense signal delay after thermal shutdown ${ }^{3}$)	$t_{\text {delay (fault) }}$	-	-	1.2	ms
Current sense output voltage limitation $I_{\mathrm{IS}}=0, I_{\mathrm{L}}=5 \mathrm{~A}$	$V_{\text {IS(lim) }}$	5.4	6.5	7.3	V
Current sense leakage/offset current $V_{\mathrm{IN}}=5 \mathrm{~V}, \Lambda_{\mathrm{L}}=0, V_{\mathrm{IS}}=0$	$I_{\text {IS(LH) }}$	-	-	5	$\mu \mathrm{A}$
Current sense settling time to $I_{\text {IS }}$ static $\pm 10 \%$ after positive input slope ${ }^{4)}, I_{\mathrm{L}}=0$ to 5 A	$t_{\text {son(IS) }}$	-	-	400	$\mu \mathrm{s}$
Current sense settling time to $I_{\text {IS }}$ static $\pm 10 \%$ after change of load current ${ }^{4}$), $L_{L}=2.5$ to 5 A	$t_{\text {slc(IS) }}$	-	-	300	

${ }^{1}$ In case of floating output, the status doesn't show open load.
${ }^{2}$ Fault condition means output voltage exceeds open load detection voltage $V_{\text {OUT(OL) }}$
$3_{\text {In the }}$ case of thermal shutdown the $V_{\text {fault }}$ signal remains for $t_{\text {delay(fault) }}$ longer than the restart of the switch (see diagram on page 16). Not subject to production test, specified by design.
4 not subject to production test, specified by design

Electrical Characteristics

Parameter	Symbol	Values			Unit
at $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=9 \ldots 16 \mathrm{~V}$, unless otherwise specified		min.	typ.	max.	

Diagnostic Characteristics

Status invalid after negative input slope	$t_{\mathrm{d}(\text { SToff })}$	-	-	1.2	ms
Status invalid after positive input slope with open load	$t_{\mathrm{d}(\text { STOL })}$	-	-	20	$\mu \mathrm{~s}$

Input Feedback ${ }^{1)}$

Input resistance (see circuit page 11)	R_{I}	2.0	3.5	5.5	$\mathrm{k} \Omega$
Input turn-on threshold voltage	$V_{\mathrm{IN}(\mathrm{T}+)}$	-	-	2.4	V
Input turn-off threshold voltage	$V_{\mathrm{IN}(\mathrm{T}-)}$	1.0	-	-	
Input threshold hysteresis	$\Delta V_{\mathrm{IN}(\mathrm{T})}$	-	0.5	-	
Off state input current $V_{\mathrm{IN}}=0.4 \mathrm{~V}$	$I_{\mathrm{IN}(\mathrm{off})}$	3	-	40	$\mu \mathrm{~A}$
On state input current $V_{\text {IN }}=5 \mathrm{~V}$	$I_{\mathrm{IN}(\mathrm{on})}$	20	50	90	

Reverse Battery ${ }^{2}$)

Reverse battery	$-V_{\mathrm{bb}}$	-	-	27	V
Drain-source diode voltage $\left(V_{\mathrm{OUT}}>V_{\mathrm{bb}}\right)$ $T_{\mathrm{j}}=150^{\circ} \mathrm{C}, I_{\mathrm{bb}}=-10 \mathrm{~mA}$	$-V_{\mathrm{ON}}$	-	330	-	mV

$1_{\text {If }}$ ground resistors R_{GND} are used, add the voltage drop across these resistor.
${ }^{2}$ Requires a 150Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input and status currents have to be limited. (see max. ratings page 4)

Truth Table - for each of the two channels

	Input level	Output level	Diagnostic output
Normal	L	L	$\left.\mathrm{Z}^{1}\right)$
Operation	H	$v_{b b}$	$I_{\text {IS }}=I_{L} /$ kilis
Current Limitation ${ }^{2}$)	H	$V_{\text {bb }}$	$V_{\text {fault }}$
Short circuit to GND	L	L	Z^{1}
	H	L	$V_{\text {fault }}$
Overtemperature	L	L	Z^{1}
	H	L	$V_{\text {fault }}$
Short circuit to $V_{b b}$	L	$V_{\text {bb }}$	$V_{\text {fault }}$
	H	$V_{\text {bb }}$	$<I_{\text {IS }}=I_{\text {L }} /$ kilis 3)
Open load	L	$>V_{\text {out(OL) }}$	$V_{\text {fault }}$
	H	$V_{\text {bb }}$	Z^{1}

L = " Low" Level Z = high impedance, potential depends on external circuit
$H=$ "High" Level $\quad \mathrm{V}_{\text {fault }}=5 \mathrm{~V}$ typ., constant voltage independent of external sense resistor.
Parallel switching of channels is possible by connecting the inputs and outputs parallel.
The current sense ouputs have to be connected with a single sense resistor.

Terms

Leadframe ($V_{\text {bb }}$) is connected to pin $1,10,11,15,16,20$
${ }^{1}$ L-potential by using a sense resistor
${ }^{2}$ Current limitation is only possible while the device is switched on.
$3^{\text {Low }}$ ohmic short to V_{bb} may reduce the output current $/ \mathrm{L}$ and therefore also the sense current $/ \mathrm{IS}$.

Input circuit (ESD protection), IN1 or IN2

The use of ESD zener diodes as voltage clamp at DC conditions is not recommended.

Sense-Status output, IS1 or IS2
ON-State: Normal operation: $I_{S}=L_{L} / \mathrm{kILIS}$
$V_{\mathrm{IS}}=I_{\mathrm{S}} * R_{\mathrm{IS}} ; \quad R_{\mathrm{IS}}=1 \mathrm{k} \Omega$ nominal

$$
R_{\mathrm{IS}}>500 \Omega
$$

ESD zener diode: $V_{\text {ESD }}=6,1 \mathrm{~V}$ typ., max. 14 mA ; ON-State: Fault condition so as thermal shut down or current limitation

$V_{\text {fault }}=6 \mathrm{~V}$ typ ; $V_{\text {fault }}<V_{\text {ESD }}$ under all conditions OFF-State diagnostic condition:
Open Load, if $V_{\text {OUT }}>3 \mathrm{~V}$ typ.; IN low

Inductive and overvoltage output clamp, OUT1 or OUT2

$V_{\text {OUT }}$ clamped to $V_{\text {OUT(CL) }}=-15 \mathrm{~V}$ typ.

Overvolt. Protection of logic part OUT1 or OUT2

$V_{\mathrm{Z} 1}=6,1 \mathrm{~V}$ typ., $\mathrm{V}_{\mathrm{Z} 2}=47 \mathrm{~V}$ typ., $R_{\mathrm{GND}}=150 \Omega$,
$R_{\text {IS }}=1 \mathrm{k} \Omega, R_{\mathrm{I}}=3,5 \mathrm{k} \Omega$ typ.

ESD-Zener diode: 6,1V typ., max. 5 mA ; $R_{\mathrm{ST}(\mathrm{ON})}<375 \Omega$ at $1,6 \mathrm{~mA}$.. The use of ESD zener diodes as voltage clamp at DC conditions is not recommended.

BTS 5240G

Reverse battery protection

OUT1 or OUT2

$V_{\mathrm{Z} 1}=6,1 \mathrm{~V}$ typ., $V_{\mathrm{Z} 2}=47 \mathrm{~V}$ typ., $R_{\mathrm{GND}}=150 \Omega$ $R_{\mathrm{IS}}=1 \mathrm{k} \Omega, R_{\mathrm{I}}=3,5 \mathrm{k} \Omega$ typ.
In case of reverse battery the load current has to be limited by the load. Protection functions are not active.
Open load detection, OUT1 or 2
Off-state diagnostic condition:
Open load, if $V_{\text {OUT }}>3 V$ typ.; $I N=$ low

GND disconnect

Any kind of load.

Vbb disconnect with energized inductive load

For inductive load currents up to the limits defined by Z_{L} each switch is protected against loss of $V_{b b}$. (max. ratings and diagram on page 12)
Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load all the load current flows through the GND connection.

Inductive load switch-off energy dissipation

Energy stored in load inductance: $E=1 / 2 * L * L_{L}{ }^{2}$
While demagnetizing load inductance, the enérgy dissipated in PROFET is $E_{A S}=E_{b b}+E_{L}-E_{R}=V_{O N(C L)}{ }^{*} i_{L}(t) d t$, with an approximate solution for $R_{L}>0 \Omega$:
$E_{A S}=\frac{I_{L} * L}{2 * R_{L}} *\left(V_{b b}+\left|V_{O U T}(C L)\right|\right) * \ln \left(1+\frac{I_{L} * R_{L}}{\left|V_{O U T}(C L)\right|}\right)$

Maximum allowable load inductance
for a single switch off (one channel)
$\mathrm{L}=\mathrm{f}(\mathrm{IL}) ; T_{\text {jstart }}=150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=12 \mathrm{~V}, R_{\mathrm{L}}=0 \Omega$

Typ. on-state resistance
$\boldsymbol{R}_{\mathrm{ON}}=\mathrm{f}\left(V_{\mathrm{bb}}, \boldsymbol{T}_{\mathrm{j}}\right) ; \mathrm{I}_{\mathrm{L}}=5 \mathrm{~A} ; V_{\mathrm{in}}=$ high

Typ. standby current
$I_{b b}($ off $)=f\left(T_{j}\right) ; V_{b b}=16 \mathrm{~V} ; V_{\mathrm{IN} 1,2}=$ low

Timing diagrams

All channels are symmetric and consequently the diagrams are valid for channel 1 and channel 2 .

Figure 1a: Switching a resistive load, change of load current in on-condition

The sense signal is not valid during settling time after turn on or change of load current. $\operatorname{tslc}(I S)=300 \mu \mathrm{~s}$ max.

Figure 1b: $V_{b b}$ turn on

Figure 1c: Behaviour of sense output: Sense current (I_{S}) and sense voltage (V_{S}) as function of load current dependent on the sense resistor.
Shown is V_{S} and I_{S} for three different sense resistors. Curve 1 refers to a low resistor, curve 2 to a medium-sized resistor and curve 3 to a big resistor. Note, that the sense resistor may not falls short of a minimum value of 500Ω.

$$
\begin{aligned}
& I_{\mathrm{S}}=I_{\mathrm{L}} / k_{\mathrm{ILIS}} \\
& V_{\mathrm{IS}}=I_{\mathrm{S}} * R_{\mathrm{IS} ;} ; R_{\mathrm{IS}}=1 \mathrm{k} \Omega \text { nominal } \\
& \quad R_{\mathrm{IS}}>500 \Omega
\end{aligned}
$$

proper turn on under all conditions

Figure 2a: Switching a lamp

Figure 2b: Switching a lamp with current limit: The behaviour of I_{S} and V_{S} is shown for a resistor, which refers to curve 1 in figure 1c

Figure 3a: Short circuit:
Shut down by overtemperature, reset by cooling

Heating up may require several milliseconds, depending on external conditions.
$L(\lim)=50 \mathrm{~A}$ typ. increases with decreasing temperature.

Figure 3b: Turn on into short circuit, shut down by overtemperature, restart by cooling (channel 1 and 2 switched parallel)

Figure 4a: Overtemperature
Reset if $T_{j}<T_{\text {jt }}$
The behaviour of I_{S} and V_{S} is shown for a resistor, which refers to curve 1 in figure 1 c .

Figure 5a:Open-load: detection in OFF-state, turn on/off to open load.
Open load of channel 1; other channels normal opertaion.
$t_{\text {off }}=220 \mu \mathrm{~s}$ max.; $t_{\mathrm{d} \text { (SToff) }}=1,2 \mathrm{~ms}$ max.
with pull up resistor at output

Figure 6b: Current sense ratio ${ }^{1)}$

${ }^{1}$ This range for the current sense ratio refers to all devices. The accuracy of the $k_{\text {ILIS }}$ can be raised by calibrating the value of $k_{\text {ILIS }}$ for every single device.

Package and ordering code

all dimensions in mm

P-DSO-20-21

Sales Code	BTS 5240G
Ordering Code	Q67060-S6145

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR SIP32510DT-T1-GE3 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12 AP22814ASN-7

[^0]: ${ }^{1}$ Device on $50 \mathrm{~mm}^{*} 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with 6 cm 2 (one layer, $70 \mu \mathrm{~m}$ thick) copper area for V_{bb} connection. PCB is vertical without blown air.
 $2_{\text {not subject to production test, specified by design }}$

