Smart High-Side Power Switch

 Smart High-Side Power Switch
Data Sheet

Rev. 1.3, 2010-03-16

Smart Four Channel Highside Power Switch

Features

- Overload protection
- Current limitation
- Short-circuit protection
- Thermal shutdown
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads
- Reverse battery protection ${ }^{1)}$
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Open drain diagnostic output
- Open load detection in ON-state
- CMOS compatible input
- Loss of ground and loss of V_{bb} protection
- Electrostatic discharge (ESD) protection

Application

- $\mu \mathrm{C}$ compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
- All types of resistive, inductive and capacitive loads

Product Summary

Overvoltage Protection Operating voltage	$V_{\mathrm{bb}(\mathrm{AZ})}$ $V_{\text {bb(on) }}$		5.0 ... 34	V
active channels:	one	two parallel	four parallel	
On-state resistance RoN	100	50	25	$\mathrm{m} \Omega$
Nominal load current $L_{\text {L(NOM })}$	2.9	4.3	6.3	A
Current limitation $L_{\text {L(SCr) }}$	8	8	8	A

- Replaces electromechanical relays and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions.

Pin Definitions and Functions

Pin	Symbol	Function
$\begin{aligned} & \hline 1,10, \\ & 11,12, \\ & 15,16, \\ & 19,20 \\ & \hline \end{aligned}$	V_{bb}	Positive power supply voltage. Design the wiring for the simultaneous max. short circuit currents from channel 1 to 4 and also for low thermal resistance
3	IN1	Input 1 .. 4, activates channel 1 .. 4 in case of logic high signal
5	IN2	
7	IN3	
9	IN4	
18	OUT1	Output 1 .. 4, protected high-side power output of channel 1 .. 4. Design the wiring for the max. short circuit current
17	OUT2	
14	OUT3	
13	OUT4	
4	ST1/2	Diagnostic feedback 1/2 of channel 1 and channel 2 , open drain, low on failure
8	ST3/4	Diagnostic feedback 3/4 of channel 3 and channel 4, open drain, low on failure
2	GND1/2	Ground $\mathbf{1 / 2}$ of chip 1 (channel 1 and channel 2)
6	GND3/4	Ground 3/4 of chip 2 (channel 3 and channel 4)

Pin configuration (top view)

V_{bb}	\bullet	20	$V_{b b}$
GND1/2	2	19	$V_{b b}$
IN1	3	18	OUT1
ST1/2	4	17	OUT2
IN2	5	16	V_{bb}
GND3/4	6	15	$V_{b b}$
IN3	7	14	OUT3
ST3/4	8	13	OUT4
IN4	9	12	V_{bb}
V_{bb}	10	11	$V_{b b}$

[^0]Smart High-Side Power Switch BTS721L1

Block diagram

Four Channels; Open Load detection in on state;

Leadframe connected to pin 1, 10, 11, 12, 15, 16, 19, 20

Smart High-Side Power Switch
BTS721L1

Maximum Ratings at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 4)	$V_{\text {bb }}$	43	V
Supply voltage for full short circuit protection $T_{\mathrm{j}, \text { start }}=-40 \ldots+150^{\circ} \mathrm{C}$	$V_{\text {bb }}$	34	V
Load current (Short-circuit current, see page 5)	L	self-limited	A
Load dump protection ${ }^{2}$) $V_{\text {LoadDump }}=U_{\mathrm{A}}+V_{\mathrm{s}}, U_{\mathrm{A}}=13.5 \mathrm{~V}$ $R_{1}^{3)}=2 \Omega, t_{\mathrm{d}}=200 \mathrm{~ms} ; \mathbb{I N}=$ low or high, each channel loaded with $R_{\mathrm{L}}=4.7 \Omega$,	$V_{\text {Load }}$ dump ${ }^{4)}$	60	V
Operating temperature range Storage temperature range	$\begin{aligned} & \hline T_{\mathrm{j}} \\ & T_{\mathrm{stg}} \end{aligned}$	$\begin{aligned} & \hline-40 \ldots+150 \\ & -55 \ldots+150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Power dissipation (DC) ${ }^{5}$ $T_{\mathrm{a}}=25^{\circ} \mathrm{C}:$ (all channels active) $T_{\mathrm{a}}=85^{\circ} \mathrm{C}:$	$P_{\text {tot }}$	$\begin{aligned} & 3.7 \\ & 1.9 \end{aligned}$	W
Inductive load switch-off energy dissipation, single pulse $\mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{i}, \text { start }}=150^{\circ} \mathrm{C}^{5}$), $I_{\mathrm{L}}=2.9 \mathrm{~A}, \mathrm{Z}_{\mathrm{L}}=58 \mathrm{mH}, 0 \Omega$ one channel: $I_{\mathrm{L}}=4.3 \mathrm{~A}, \mathrm{Z}_{\mathrm{L}}=58 \mathrm{mH}, 0 \Omega$ two parallel channels: $\ell_{\mathrm{L}}=6.3 \mathrm{~A}, \mathrm{Z}_{\mathrm{L}}=58 \mathrm{mH}, 0 \Omega$ four parallel channels: see diagrams on page 9 and page 10	$E_{\text {AS }}$	$\begin{array}{r} 0.3 \\ 0.65 \\ 1.5 \end{array}$	J
Electrostatic discharge capability (ESD) (Human Body Model)	$V_{\text {ESD }}$	1.0	kV
Input voltage (DC) Current through input pin (DC) Current through status pin (DC) see internal circuit diagram page 8	$\begin{aligned} & \hline V_{\mathrm{IN}} \\ & I_{\mathrm{IN}} \\ & \mathrm{I}_{\mathrm{ST}} \end{aligned}$	$\begin{array}{r} -10 \ldots+16 \\ \pm 2.0 \\ \pm 5.0 \end{array}$	V $m A$

Thermal resistance	each channel:		$R_{\text {this }}$	15
junction - soldering point 5),6)	K/W			
junction - ambient 5)	one channel active:	$R_{\text {thja }}$	41	
	all channels active:		34	

[^1]
Electrical Characteristics

Parameter and Conditions, each of the four channels	Symbol	Values			Unit
at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified		min	typ	max	

Load Switching Capabilities and Characteristics

On-state resistance (V_{bb} to OUT)					
$\mathrm{I}_{\mathrm{L}}=2 \mathrm{~A} \quad$ each channel, $\quad \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$:	$\mathrm{R}_{\text {ON }}$	--	85	100	$m \Omega$
$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$:			170	200	
two parallel channels, $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$:			43	50	
four parallel channels, $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$:			22	25	
Nominal load current one channel active:	L(NOM)	2.5	2.9	--	A
two parallel channels active:		3.8	4.3		
four parallel channels active:		5.9	6.3		
Device on PCB ${ }^{5}$), $T_{\mathrm{a}}=85^{\circ} \mathrm{C}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$					
Output current while GND disconnected or pulled up; $\mathrm{V}_{\mathrm{bb}}=30 \mathrm{~V}, V_{\mathrm{IN}}=0$, see diagram page 9	L(GNDDigh)	--	--	10	mA
Turn-on time to $90 \% V_{\text {Out }}$:	$t_{\text {on }}$	80	200	400	$\mu \mathrm{s}$
Turn-off time to $10 \% V_{\text {OUT }}$:	$t_{\text {off }}$	80	200	400	
Slew rate on	$\mathrm{d} V / \mathrm{dt}_{\text {on }}$	0.1	--	1	V/us
10 to $30 \% V_{\text {OUT, }} R_{\mathrm{L}}=12 \Omega, \quad T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:					
Slew rate off	-d $V / \mathrm{dt}_{\text {fff }}$	0.1	--	1	V/ $/ \mathrm{s}$

Operating Parameters

Operating voltage ${ }^{7}$	$T_{j}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb(on) }}$	5.0	--	34	V
Undervoltage shutdown	$T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb(under }}$	3.5	--	5.0	V
Undervoltage restart	$\begin{array}{r} T_{\mathrm{j}}=-40 \ldots+25^{\circ} \mathrm{C}: \\ T_{\mathrm{j}}=+150^{\circ} \mathrm{C}: \end{array}$	$V_{\text {bb }(\mathrm{urst})}$	--	--	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	V
Undervoltage restart of charge p see diagram page 14	$\operatorname{ump}_{T_{j}}=-40 \ldots+150^{\circ} \mathrm{C}:$	$V_{\text {bb(ucp) }}$	--	5.6	7.0	V
Undervoltage hysteresis $\Delta V_{\mathrm{bb}(\text { under })}=V_{\mathrm{bb}(\mathrm{urst})}-V_{\mathrm{bb}(\text { under })}$		$\Delta V_{\text {bb(under) }}$	--	0.2	--	V
Overvoltage shutdown	$\mathrm{T}_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb(over }}$	34	--	43	V
Overvoltage restart	$T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb(}}$ rst)	33	--	--	V
Overvoltage hysteresis	$\mathrm{T}_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$\Delta V_{\text {bb(over }}$	--	0.5	--	V
Overvoltage protection ${ }^{8}$ $I_{\mathrm{bb}}=40 \mathrm{~mA}$	$T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}:$	$V_{\text {bb(AZ) }}$	42	47	--	V
Standby current, all channels off $\mathrm{V}_{\mathrm{IN}}=0$	$\begin{array}{r} T_{\mathrm{j}}=25^{\circ} \mathrm{C}: \\ T_{\mathrm{j}}=150^{\circ} \mathrm{C}: \end{array}$	$\mathrm{l}_{\mathrm{b} \text { (off) }}$	--	$\begin{aligned} & 28 \\ & 44 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 70 \end{aligned}$	$\mu \mathrm{A}$

[^2]Smart High-Side Power Switch
BTS721L1

Parameter and Conditions, each of the four channels at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified	Symbol	Values			Unit
		min	typ	max	
Leakage output current (included in $I_{\text {bb(off) }}$) $V \mathbb{I N}=0$	$L_{\text {L(off) }}$	--	--	12	$\mu \mathrm{A}$
Operating current ${ }^{9}$, $, V_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$ $I_{\mathrm{GND}}=I_{\mathrm{GND} 1 / 2}+I_{\mathrm{GND} / 4}, \quad$ one channel on: four channels on:	IGND	--	2	3 ${ }^{3}$	mA

Protection Functions ${ }^{10}$

Initial peak short circuit current limit, (see timing diagrams, page 13) $\begin{aligned} & \text { each channel, }, T_{\mathrm{j}}=-40^{\circ} \mathrm{C}: \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C}: \\ & T_{\mathrm{j}}=+150^{\circ} \mathrm{C}: \end{aligned}$ two parallel channels four parallel channels	$\begin{aligned} & \text { L(SCp) } \\ & \\ & \text { twi } \\ & \text { tour tim } \end{aligned}$	$\begin{array}{r} 11 \\ 9 \\ 5 \\ \text { ee curre } \\ \text { te curre } \end{array}$	$\begin{array}{r} 18 \\ 14 \\ 8 \\ 8 \\ \text { fone } \\ \text { ff one } \end{array}$	$\begin{aligned} & 25 \\ & 22 \\ & 14 \\ & \text { inel } \\ & \text { inel } \end{aligned}$	A
Repetitive short circuit current limit, $T_{\mathrm{j}}=T_{\mathrm{jt}} \quad$ each channel two parallel channels four parallel channels (see timing diagrams, page 13)	$1 \mathrm{~L}(\mathrm{SCr})$	--	8 8 8	--	A
$\begin{array}{ll} \hline \text { Initial short circuit shutdown time } & T_{\mathrm{j}, \text { start }}=-40^{\circ} \mathrm{C}: \\ & T_{\mathrm{j}, \text { start }}=25^{\circ} \mathrm{C}: \end{array}$ (see page 12 and timing diagrams on page 13)	$t_{\text {off }}(\mathrm{SC})$	--	$\begin{gathered} \hline 15 \\ 12 \end{gathered}$	--	s
Output clamp (inductive load switch off) ${ }^{11)}$ $\mathrm{at} \mathrm{~V}_{\mathrm{ON}(\mathrm{CL})}=\mathrm{V}_{\mathrm{bb}}-\mathrm{V}_{\mathrm{OUT}}$	$V_{\text {ON(CL) }}$	--	47	--	V
Thermal overload trip temperature	$T_{\text {jt }}$	150	--	--	C
Thermal hysteresis	ΔT_{jt}	--	10	--	K

Reverse Battery

Reverse battery voltage $\left.{ }^{12}\right)$	$-V_{b b}$	--	--	32	V
Drain-source diode voltage $\left(V_{\text {out }}>V_{b b}\right)$ $L=-2.9 A, T_{j}=+150^{\circ} \mathrm{C}$	$-V_{\mathrm{ON}}$	--	610	--	mV

[^3]Smart High-Side Power Switch
BTS721L1

Parameter and Conditions, each of the four channels at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified

Symbol	Values			Unit
	\min	typ	\max	

Diagnostic Characteristics

Input and Status Feedback ${ }^{14}$)

Input resistance (see circuit page 8) $T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}:$	R_{1}	2.5	3.5	6	$\mathrm{k} \Omega$
Input turn-on threshold voltage $\Gamma_{T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C} \text { : }}$	$V_{\operatorname{IN}(\mathrm{T}+)}$	1.7	--	3.5	V
$\text { Input turn-off threshold voltage } \underset{T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C} \text { : }}{\substack{\mathrm{l} \\ \\ \hline}}$	$V_{\text {IN(T-) }}$	1.5	--	--	V
Input threshold hysteresis	$\Delta V_{\text {IN(T) }}$	--	0.5	--	V
$\begin{array}{ll} \hline \text { Off state input current } & V_{\mathrm{IN}}=0.4 \mathrm{~V}: \\ T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}: & \\ \hline \end{array}$	$I_{\text {IN(off }}$	1	--	50	$\mu \mathrm{A}$
On state input current $T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}:$ $V_{\mathrm{IN}}=5 \mathrm{~V}:$	$I_{1 N(0 n)}$	20	50	90	$\mu \mathrm{A}$
Delay time for status with open load after switch off (other channel in off state) (see timing diagrams, page 14), $T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}:$	$t_{\text {d(ST OL4) }}$	100	320	800	$\mu \mathrm{s}$
Delay time for status with open load after switch off (other channel in on state) (see timing diagrams, page 14), $\quad T_{j}=-40 . .+150^{\circ} \mathrm{C}$:	$t_{\text {d(ST OLS) }}$	--	5	20	$\mu \mathrm{s}$
Status invalid after positive input slope (open load) $T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}:$	$t_{\text {d(ST) }}$	--	200	600	$\mu \mathrm{s}$
Status output (open drain)					
Zener limit voltage $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, I_{\text {ST }}=+1.6 \mathrm{~mA}$:	$V_{\text {ST(high) }}$	5.4	6.1	--	V
ST low voltage $\quad T_{\mathrm{j}}=-40 \ldots+25^{\circ} \mathrm{C}$, $I_{\mathrm{ST}}=+1.6 \mathrm{~mA}$: $T_{\mathrm{j}}=+150^{\circ} \mathrm{C}, I_{\mathrm{ST}}=+1.6 \mathrm{~mA}:$		--	-	0.4 0.6	

[^4]Smart High-Side Power Switch BTS721L1

Truth Table

Channel 1 and 2	Chip 1	IN1	IN2	OUT1	OUT2	ST1/2
Channel 3 and 4 (equivalent to channel 1 and 2)	Chip 2	IN3	IN4	OUT3	OUT4	ST3/4 BTS 721L1
Normal operation		$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
Open load	Channel 1 (3)	$\begin{aligned} & \hline L \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{gathered} H\left(L^{15)}\right) \\ H \\ L \end{gathered}$
	Channel 2 (4)	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{gathered} \hline H\left(L^{15}\right) \\ H \\ L \\ \hline \end{gathered}$
Short circuit to $\mathbf{V}_{\mathbf{b b}}$	Channel 1 (3)	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{gathered} \left.L^{16}\right) \\ H \\ H\left(L^{17}\right) \end{gathered}$
	Channel 2 (4)	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} L^{16} \\ H \\ H\left(L^{17}\right) \end{gathered}$
Overtemperature	both channel	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { L } \\ & \text { L } \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$
	Channel 1 (3)	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{X} \\ & \mathbf{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathbf{X} \\ & \mathbf{X} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$
	Channel 2 (4)	$\begin{aligned} & \hline \mathbf{X} \\ & \mathbf{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{X} \\ & \mathbf{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathbf{H} \\ & \mathbf{L} \\ & \hline \end{aligned}$
Undervoltage/ Overvoltage		X	X	L	L	H

$\begin{array}{lcl}\mathrm{L}=\text { = "Low" Level } & \mathrm{X}=\text { don't care } & \mathrm{Z}=\text { high impedance, potential depends on external circuit } \\ \mathrm{H}=\text { "High" Level } & \text { Status signal valid after the time delay shown in the timing diagrams }\end{array}$
Parallel switching of channel 1 and 2 (also channel 3 and 4) is easily possible by connecting the inputs and outputs in parallel (see truth table). If switching channel 1 to 4 in parallel, the status outputs ST1/2 and ST3/4 have to be configured as a 'Wired OR' function with a single pull-up resistor.

Terms

Leadframe $\left(\mathrm{V}_{\mathrm{bb}}\right)$ is connected to pin 1,10,11,12,15,16,19,20
External $\mathrm{R}_{\mathrm{GND}}$ optional; two resistors $\mathrm{R}_{\mathrm{GND} 1 / 2}, \mathrm{R}_{\mathrm{GND} 3 / 4}=150 \Omega$ or a single resistor $\mathrm{R}_{\mathrm{GND}}=75 \Omega$ for reverse battery protection up to the max. operating voltage.
15) With additional external pull up resistor
16) An external short of output to $V_{b b}$ in the off state causes an internal current from output to ground. If $R_{G N D}$ is used, an offset voltage at the GND and ST pins will occur and the $\mathrm{V}_{\text {ST low }}$ signal may be errorious.
17) Low resistance to $V_{b b}$ may be detected by no-load-detection

Input circuit (ESD protection), IN1... 4

ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Status output, ST1/2 or ST3/4

ESD-Zener diode: 6.1 V typ., max 5.0 mA ; $\mathrm{R}_{\mathrm{ST}}(\mathrm{ON})<380 \Omega$ at 1.6 mA , ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Inductive and overvoltage output clamp, OUT1... 4

Von clamped to $\operatorname{VON(CL)}=47 \mathrm{~V}$ typ.

Overvoltage protection of logic part
GND1/2 or GND3/4

$\mathrm{V}_{\mathrm{Z} 1}=6.1 \mathrm{~V}$ typ., $\mathrm{V}_{\mathrm{Z} 2}=47 \mathrm{~V}$ typ., $\mathrm{R}_{\mathrm{I}}=3.5 \mathrm{k} \Omega$ typ., $\mathrm{R}_{\mathrm{GND}}=150 \Omega$

Reverse battery protection

$R_{\mathrm{GND}}=150 \Omega, R_{\mathrm{I}}=3.5 \mathrm{k} \Omega$ typ,
Temperature protection is not active during inverse current operation.

Open-load detection, OUT1... 4
ON-state diagnostic condition:
$V_{\mathrm{ON}}<\mathrm{R}_{\mathrm{ON}} \cdot \mathrm{I}_{\mathrm{L}(\mathrm{OL})}$; IN high

OFF-state diagnostic condition:
Vout > 3 V typ.; IN low

GND disconnect
(channel $1 / 2$ or $3 / 4$)

Any kind of load. In case of $\mathrm{IN}=$ high is $V_{\mathrm{OUT}} \approx \mathrm{VIN}_{\mathrm{IN}}-\mathrm{VIN}_{\mathrm{IN}}(\mathrm{T}+)$. Due to $V_{G N D}>0$, no $V_{S T}=$ low signal available.

GND disconnect with GND pull up
(channel $1 / 2$ or $3 / 4$)

Any kind of load. If $\mathrm{V}_{\mathrm{GND}}>\mathrm{VIN}^{-} \operatorname{VIN}(\mathrm{T}+)$ device stays off Due to VGND >0, no VST $=$ low signal available.
V_{bb} disconnect with energized inductive load

For an inductive load current up to the limit defined by E_{AS} (max. ratings see page 3 and diagram on page 10) each switch is protected against loss of V_{bb}.
Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load the whole load current flows through the GND connection.

Inductive load switch-off energy dissipation

Energy stored in load inductance:

$$
E_{\mathrm{L}}=1 / 2 \cdot L \cdot I_{\mathrm{L}}^{2}
$$

While demagnetizing load inductance, the energy dissipated in PROFET is

$$
E_{A S}=E_{b b}+E_{L}-E_{R}=V_{O N(C L)} \cdot i_{L}(t) d t
$$

with an approximate solution for $R_{L}>0 \Omega$:

$$
E_{\mathrm{AS}}=\frac{\mathrm{IL} \cdot \mathrm{~L}}{2 \cdot \mathrm{R}_{\mathrm{L}}}\left(\mathrm{~V}_{\mathrm{bb}}+\mid \mathrm{V}_{\mathrm{OUT}(\mathrm{CL})}\right) \ln \left(1+\frac{\mathrm{IL} \cdot \mathrm{R}_{\mathrm{L}}}{\mid \mathrm{V}_{\mathrm{OUT}(\mathrm{CL}) \mid}}\right)
$$

Maximum allowable load inductance for a single switch off (one channel) ${ }^{5}$)
$L=f\left(I_{L}\right) ; \mathrm{T}_{\mathrm{j}, \text { start }}=150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0 \Omega$

IL [A]

Typ. on-state resistance
$\boldsymbol{R O N}_{\boldsymbol{O}}=\boldsymbol{f}\left(V_{b b}, \boldsymbol{T}_{\boldsymbol{j}}\right) ; \mathrm{IL}_{\mathrm{L}}=2 \mathrm{~A}, \mathrm{IN}=$ high

Typ. open load detection current
$I_{L}(O L)=f\left(V_{b b}, T_{j}\right) ; \mathbb{I N}=$ high

Typ. standby current
$I_{b b(o f f)}=f\left(T_{j}\right) ; \mathrm{V}_{\mathrm{bb}}=9 \ldots 34 \mathrm{~V}, \mathrm{IN} 1 \ldots 4=$ low lbb (off) $[\mu \mathrm{A}]$

Typ. initial short circuit shutdown time
$t_{\text {off }(S C)}=f\left(T_{j, s t a r t}\right) ; \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$

Smart High-Side Power Switch BTS721L1

Timing diagrams

Timing diagrams are shown for chip 1 (channel 1/2). For chip 2 (channel $3 / 4$) the diagrams are valid too. The channels 1 and 2 , respectively 3 and 4 , are symmetric and consequently the diagrams are valid for each channel as well as for permuted channels

Figure 1a: V_{bb} turn on:

Figure 2a: Switching a lamp:

The initial peak current should be limited by the lamp and not by the initial short circuit current $\mathrm{I}_{\mathrm{L}(\mathrm{SCp})}=14 \mathrm{~A}$ typ. of the device.

Figure 2b: Switching an inductive load

*) if the time constant of load is too large, open-load-status may occur

Figure 3a: Turn on into short circuit:
shut down by overtemperature, restart by cooling
IN1 other channel: normal operation

${ }_{\mathrm{L} 1}$

Heating up of the chip may require several milliseconds, depending on external conditions ($\mathrm{t}_{\mathrm{off}}(\mathrm{SC})$ vs. $\mathrm{T}_{\mathrm{j}, \text { start }}$ see page 12)

Figure 3b: Turn on into short circuit:
shut down by overtemperature, restart by cooling (two parallel switched channels 1 and 2)

Figure 4a: Overtemperature:
Reset if $T_{\mathrm{j}}<T_{\mathrm{jt}}$

Figure 5c: Open load: detection in ON- and OFF-state (with REXT), turn on/off to open load

$\mathrm{t}_{\text {d(ST OL5) }}$ depends on external circuitry because of high impedance

Figure 6a: Undervoltage:

Figure 6b: Undervoltage restart of charge pump

IN = high, normal load conditions.
Charge pump starts at $\mathrm{V}_{\mathrm{bb}(\mathrm{ucp})}=5.6 \mathrm{~V}$ typ.

Figure 7a: Overvoltage:

Package Outlines

1) Does not include plastic or metal protrusions of 0.15 max per side
2) Does not include dambar protrusion of 0.05 max per side

Figure 1 PG-DSO-20 (Plastic Dual Small Outline Package) (RoHS-compliant)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e $\mathrm{Pb}-$ free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Please specify the package needed (e.g. green package) when placing an order

Smart High-Side Power Switch
BTS721L1

Revision History

Version	Date	Changes
Rev. 1.3	$2010-03-16$	page 6: changed reference to the timing diagram
Rev. 1.2	2009-07-21	page 1: added new coverpage page 6: Initial short circuit shutdown time changed: toff(SC) $-40^{\circ} \mathrm{C}$ to 15 ms toff(SC) $25^{\circ} \mathrm{C}$ to 12 ms page 12: changed graphic
V1.1	2007-08-30	Creation of the green datasheet. First page :
Adding the green logo and the AEC qualified Adding the bullet AEC qualified and the RoHS compliant features Package page Modification of the package to be green.		

Edition 2010-03-16

Published by
Infineon Technologies AG
81726 Munich, Germany
© Infineon Technologies AG 3/16/10.
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR SIP32510DT-T1-GE3 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12 AP22814ASN-7

[^0]: 1) With external current limit (e.g. resistor $\mathrm{R}_{\mathrm{GND}}=150 \Omega$) in GND connection, resistor in series with ST connection, reverse load current limited by connected load.
[^1]: 2) Supply voltages higher than $\mathrm{V}_{\mathrm{bb}(\mathrm{AZ})}$ require an external current limit for the GND and status pins, e.g. with a 150Ω resistor in the GND connection and a $15 \mathrm{k} \Omega$ resistor in series with the status pin. A resistor for input protection is integrated.
 3) $\quad R_{I}=$ internal resistance of the load dump test pulse generator
 4) $V_{\text {Load dump }}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
 5) Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for V_{bb} connection. PCB is vertical without blown air. See page 15
 6) Soldering point: upper side of solder edge of device pin 15 . See page 15
[^2]: 7) At supply voltage increase up to $V_{b b}=5.6 \mathrm{~V}$ typ without charge pump, $V_{\mathrm{OUT}} \approx V_{\mathrm{bb}}-2 \mathrm{~V}$
 8) see also $V_{\mathrm{ON}(\mathrm{CL})}$ in circuit diagram on page 8.
[^3]: 9) Add $I_{S T}$, if $I_{S T}>0$
 10) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.
 11) If channels are connected in parallel, output clamp is usually accomplished by the channel with the lowest $\mathrm{V}_{\mathrm{ON}(\mathrm{CL})}$
 12) Requires a 150Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 8).
[^4]: ${ }^{13)}$ External pull up resistor required for open load detection in off state.
 ${ }^{14)}$ If ground resistors $\mathrm{R}_{\mathrm{GND}}$ are used, add the voltage drop across these resistors.

