


## SIPMOS ® Power Transistor

- N channel
- · Enhancement mode
- Avalanche-rated
- Pb-free lead plating; RoHS compliant









| Туре          | V <sub>DS</sub> | I <sub>D</sub> | R <sub>DS(on)</sub> | Package    | Ordering Code |
|---------------|-----------------|----------------|---------------------|------------|---------------|
| BUZ 30AH3045A | 200 V           | 21 A           | 0.13 Ω              | PG-TO263-3 | Yes           |

## **Maximum Ratings**

| Parameter                                                           | Symbol                                  | Values           | Unit |
|---------------------------------------------------------------------|-----------------------------------------|------------------|------|
| Continuous drain current                                            | I <sub>D</sub>                          |                  | Α    |
| T <sub>C</sub> = 26 °C                                              |                                         | 21               |      |
| Pulsed drain current                                                | / <sub>Dpuls</sub>                      |                  |      |
| $T_{\rm C}$ = 25 °C                                                 | 100000000000000000000000000000000000000 | 84               |      |
| Avalanche current, limited by $T_{jmax}$                            | / <sub>AR</sub>                         | 21               |      |
| Avalanche energy,periodic limited by $T_{ m jmax}$                  | E <sub>AR</sub>                         | 12               | mJ   |
| Avalanche energy, single pulse                                      | E <sub>AS</sub>                         |                  |      |
| $I_{\rm D}$ = 21 A, $V_{\rm DD}$ = 50 V, $R_{\rm GS}$ = 25 $\Omega$ | 1577                                    |                  |      |
| $L = 1.53 \text{ mH}, T_j = 25 ^{\circ}\text{C}$                    |                                         | 450              |      |
| Gate source voltage                                                 | $V_{\rm GS}$                            | ± 20             | V    |
| Power dissipation                                                   | P <sub>tot</sub>                        |                  | W    |
| T <sub>C</sub> = 25 °C                                              |                                         | 125              |      |
| Operating temperature                                               | T <sub>j</sub>                          | -55 <b>+</b> 150 | °C   |
| Storage temperature                                                 | T <sub>stg</sub>                        | -55 <b>+</b> 150 |      |
| Thermal resistance, chip case                                       | R <sub>thJC</sub>                       | ≤ 1              | K/W  |
| Thermal resistance, chip to ambient                                 | R <sub>thJA</sub>                       | 75               |      |
| DIN humidity category, DIN 40 040                                   |                                         | E                |      |
| IEC climatic category, DIN IEC 68-1                                 |                                         | 55 / 150 / 56    |      |



## **Electrical Characteristics**, at $T_j$ = 25°C, unless otherwise specified

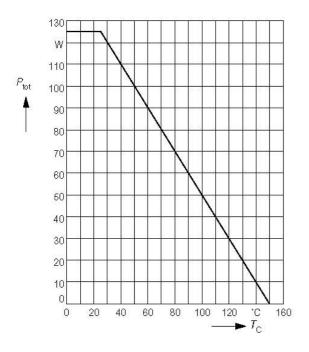
| Parameter                                                                                | Symbol               | Values |      |      | Unit |
|------------------------------------------------------------------------------------------|----------------------|--------|------|------|------|
|                                                                                          |                      | min.   | typ. | max. | 31   |
| Static Characteristics                                                                   |                      |        |      |      |      |
| Drain- source breakdown voltage                                                          | V <sub>(BR)DSS</sub> | t.     |      |      | V    |
| $V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 0.25 \text{ mA}, T_{\rm j} = 25 ^{\circ}\text{C}$ | 20 1/25              | 200    | -    | .=   |      |
| Gate threshold voltage                                                                   | V <sub>GS(th)</sub>  |        |      |      |      |
| $V_{\text{GS}} = V_{\text{DS}}$ , $I_{\text{D}} = 1 \text{ mA}$                          | 2.                   | 2.1    | 3    | 4    | ,,,  |
| Zero gate voltage drain current                                                          | l <sub>DSS</sub>     |        |      |      | μА   |
| $V_{DS} = 200 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 25 \text{ °C}$                      | Notice that state of | -      | 0.1  | 1    |      |
| $V_{\rm DS}$ = 200 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 125 °C                           |                      | -      | 10   | 100  |      |
| Gate-source leakage current                                                              | I <sub>GSS</sub>     |        |      |      | nA   |
| $V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$                                          |                      | 75     | 10   | 100  |      |
| Drain-Source on-resistance                                                               | R <sub>DS(on)</sub>  |        |      |      | Ω    |
| $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 13.5 A                                                | * *                  | _      | 0.1  | 0.13 |      |



# **Electrical Characteristics,** at $T_j$ = 25°C, unless otherwise specified

| Parameter                                                                           | Symbol           |             | Values |           | Unit |
|-------------------------------------------------------------------------------------|------------------|-------------|--------|-----------|------|
| 7                                                                                   | c                | min.        | typ.   | typ. max. |      |
| Dynamic Characteristics                                                             |                  |             |        |           |      |
| Transconductance                                                                    | $g_{fs}$         | i.          |        |           | s    |
| $V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}$ , $I_{\rm D} = 13.5 \rm A$       |                  | 6           | 15     | · =       |      |
| Input capacitance                                                                   | Ciss             |             |        | 4)        | pF   |
| $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$                    |                  | 2           | 1400   | 1900      |      |
| Output capacitance                                                                  | $C_{\rm oss}$    |             |        |           |      |
| $V_{\text{GS}} = 0 \text{ V}, V_{\text{DS}} = 25 \text{ V}, f = 1 \text{ MHz}$      |                  | <u>48</u> 1 | 280    | 400       |      |
| Reverse transfer capacitance                                                        | $C_{rss}$        |             |        |           |      |
| $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$                    |                  | -           | 130    | 200       |      |
| Turn-on delay time                                                                  | $t_{d(on)}$      |             |        |           | ns   |
| $V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 10 \text{ V}, \ I_{\rm D} = 3 \text{ A}$ | 737 - Ad.        |             |        |           |      |
| $R_{\rm GS} = 50~\Omega$                                                            |                  | =           | 30     | 45        |      |
| Rise time                                                                           | $t_{\Gamma}$     | i.          | 7      |           |      |
| $V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A                         |                  |             |        |           |      |
| $R_{\rm GS}$ = 50 $\Omega$                                                          |                  | <u>4</u> 1  | 70     | 110       |      |
| Turn-off delay time                                                                 | $t_{\rm d(off)}$ |             |        |           |      |
| $V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A                         | 295. 552         |             |        |           |      |
| $R_{\mathrm{GS}}$ = 50 $\Omega$                                                     |                  | -           | 250    | 320       |      |
| Fall time                                                                           | t <sub>f</sub>   |             |        |           |      |
| $V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A                         |                  |             |        |           |      |
| $R_{\rm GS}$ = 50 $\Omega$                                                          |                  | 7           | 90     | 120       |      |

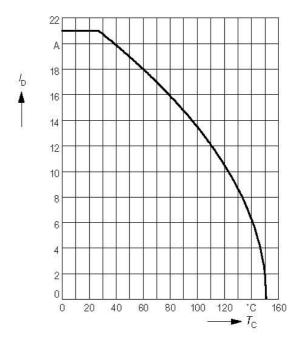



## **Electrical Characteristics**, at $T_j$ = 25°C, unless otherwise specified

| Parameter                                                                     | Symbol            | Values |      |      | Unit |
|-------------------------------------------------------------------------------|-------------------|--------|------|------|------|
|                                                                               | j.                | min.   | typ. | max. |      |
| Reverse Diode                                                                 |                   |        |      |      |      |
| Inverse diode continuous forward current                                      | I <sub>S</sub>    |        |      |      | Α    |
| $T_{\rm C}$ = 25 °C                                                           |                   | -      | -    | 21   |      |
| Inverse diode direct current,pulsed                                           | / <sub>SM</sub>   |        |      |      |      |
| $T_{\rm C} = 25  ^{\circ}{\rm C}$                                             |                   | =      | =    | 84   |      |
| Inverse diode forward voltage                                                 | $V_{\mathrm{SD}}$ |        |      |      | V    |
| $V_{\rm GS} = 0 \text{ V}, I_{\rm F} = 42 \text{ A}$                          |                   | 2      | 1.2  | 1.6  |      |
| Reverse recovery time                                                         | t <sub>rr</sub>   |        |      |      | ns   |
| $V_{R} = 100 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$ |                   | 2      | 180  | 120  |      |
| Reverse recovery charge                                                       | Q <sub>rr</sub>   |        |      |      | μC   |
| $V_{R} = 100 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$ |                   | -      | 1.2  | -    |      |



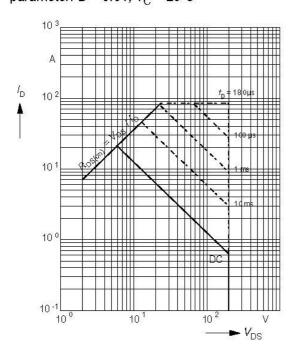
## Power dissipation


$$P_{\text{tot}} = f(T_{\text{C}})$$



## **Drain current**

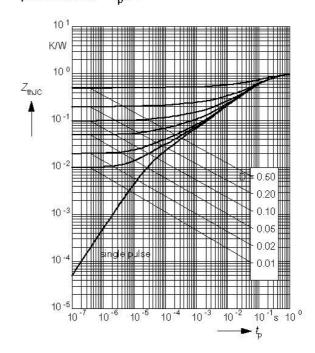
 $I_{\rm D} = f(T_{\rm C})$ 


parameter: V<sub>GS</sub>≥10 V



## Safe operating area

 $I_{\rm D} = f(V_{\rm DS})$ 

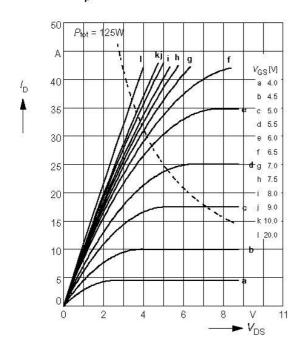

parameter: D = 0.01,  $T_{\rm C} = 25$ °C



## Transient thermal impedance

 $Z_{\text{th JC}} = f(t_{\text{p}})$ 

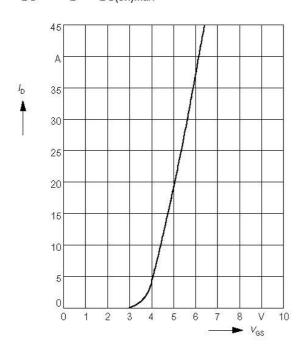
parameter:  $D = t_p / T$ 






## Typ. output characteristics

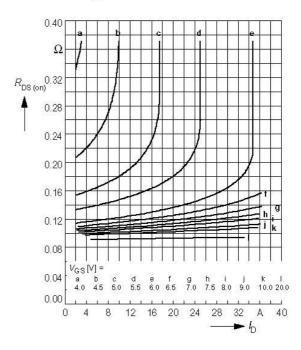
 $I_{\rm D} = f(V_{\rm DS})$ 


parameter:  $t_p$  = 80  $\mu$ s



## Typ. transfer characteristics $I_{\rm D}$ = $f(V_{\rm GS})$

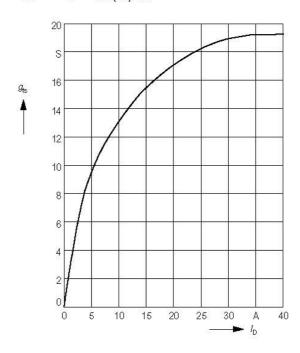
parameter:  $t_p$  = 80  $\mu$ s


V<sub>DS</sub>≥2 x I<sub>D</sub> x R<sub>DS(on)max</sub>



## Typ. drain-source on-resistance

 $R_{\mathrm{DS (on)}} = f(I_{\mathrm{D}})$ 

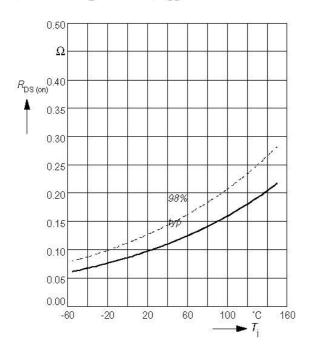

parameter: V<sub>GS</sub>



## Typ. forward transconductance $g_{fs} = f(I_D)$

parameter:  $t_p = 80 \,\mu\text{s}$ ,

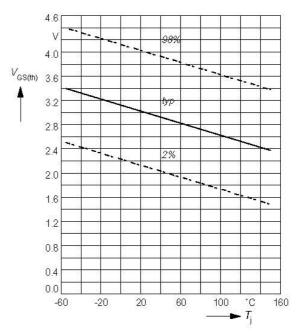
 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$ 






#### Drain-source on-resistance

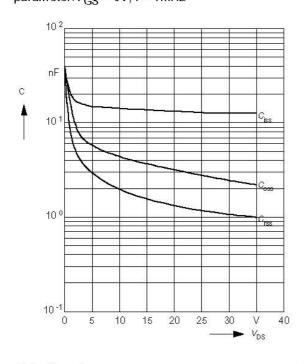
 $R_{DS \text{ (on)}} = f(T_j)$ 


parameter:  $I_D$  = 13.5 A,  $V_{GS}$  = 10 V



### Gate threshold voltage

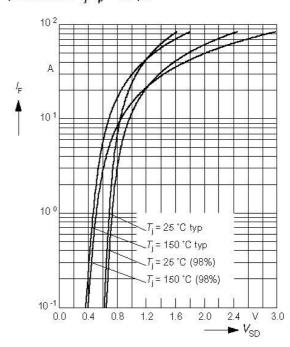
 $V_{\text{GS (th)}} = f(T_{j})$ 


parameter:  $V_{GS} = V_{DS}$ ,  $I_D = 1 \text{ mA}$ 



### Typ. capacitances

 $C = f(V_{DS})$ 

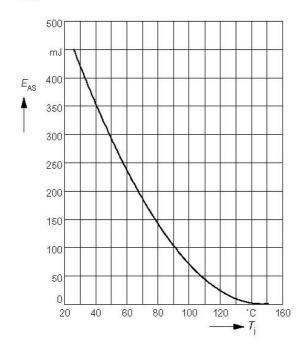

parameter: $V_{GS} = 0V$ , f = 1MHz



## Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$ 

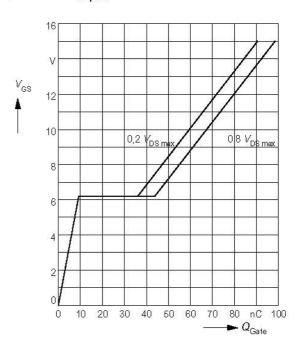
parameter:  $T_{\rm j}$ ,  $t_{\rm p}$  = 80  $\mu {\rm s}$ 





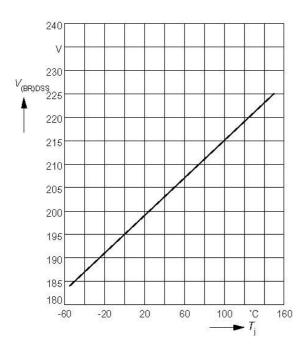

## Avalanche energy $E_{AS} = f(T_j)$

parameter:  $I_D$  = 21 A,  $V_{DD}$  = 50 V

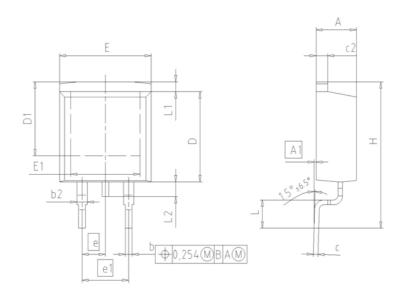

 $R_{\rm GS}$  = 25  $\Omega$ , L = 1.53 mH

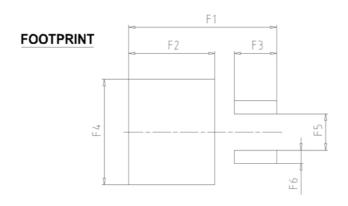


## Typ. gate charge

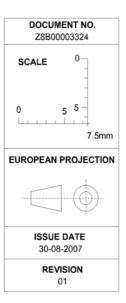

 $V_{\rm GS} = f(Q_{\rm Gate})$ 

parameter: I<sub>D puls</sub> = 32 A





### Drain-source breakdown voltage

 $V_{(BR)DSS} = f(T_j)$ 










| DIM | MILLIN | METERS | INCHES |       |  |
|-----|--------|--------|--------|-------|--|
| DIN | MIN    | MAX    | MIN    | MAX   |  |
| Α   | 4.30   | 4.57   | 0.169  | 0.180 |  |
| A1  | 0.00   | 0.25   | 0.000  | 0.010 |  |
| b   | 0.65   | 0.85   | 0.026  | 0.033 |  |
| b2  | 0.95   | 1.15   | 0.037  | 0.045 |  |
| С   | 0.33   | 0.65   | 0.013  | 0.026 |  |
| c2  | 1.17   | 1.40   | 0.046  | 0.055 |  |
| D   | 8.51   | 9.45   | 0.335  | 0.372 |  |
| D1  | 7.10   | 7.90   | 0.280  | 0.311 |  |
| E   | 9.80   | 10.31  | 0.386  | 0.406 |  |
| E1  | 6.50   | 8.60   | 0.256  | 0.339 |  |
| е   | 2.     | 54     | 0.100  |       |  |
| e1  | 5.     | 08     | 0.2    | 200   |  |
| N   |        | 2      | 2      |       |  |
| Н   | 14.61  | 15.88  | 0.575  | 0.625 |  |
| L   | 2.29   | 3.00   | 0.090  | 0.118 |  |
| L1  | 0.70   | 1.60   | 0.028  | 0.063 |  |
| L2  | 1.00   | 1.78   | 0.039  | 0.070 |  |
| F1  | 16.05  | 16.25  | 0.632  | 0.640 |  |
| F2  | 9.30   | 9.50   | 0.366  | 0.374 |  |
| F3  | 4.50   | 4.70   | 0.177  | 0.185 |  |
| F4  | 10.70  | 10.90  | 0.421  | 0.429 |  |
| F5  | 3.65   | 3.85   | 0.144  | 0.152 |  |
| F6  | 1.25   | 1.45   | 0.049  | 0.057 |  |





Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.

#### **Legal Disclaimer**

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60\_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7