

CYW920706WCDEVAL Hardware User Guide

Associated Part Family: CYW20706

Doc. No.: 002-16535 Rev. **

Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

www.cypress.com

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 2

Contents
About This Document .. 4

Purpose and Audience .. 4
Scope .. 4
Acronyms and Abbreviations ... 4
IoT Resources and Technical Support ... 4

1 Product Description .. 5

2 Board Layout.. 7

3 Board Block Diagram .. 8

4 Jumper and DIP Switch Settings .. 9

5 Current Consumption Measurement .. 11

6 Schematics ... 12

7 CYW20706 Interfaces .. 16
7.1 Fixed Interfaces ... 16
7.2 Selectable Interfaces ... 17
7.3 Selectable Interfaces Supported by CYW920706WCDEVAL .. 17

8 GPIO Information ... 21
8.1 GPIO_Pxx .. 21

8.1.1 Multiplexed GPIO_Pxx Interface Summary ... 22
8.1.2 Digital I/O Pin Interface Mapping .. 25

8.2 LHL GPIO Capabilities ... 28

9 Interface Signal Function Selection Restrictions and Considerations ... 29
9.1 I2S and PCM .. 29
9.2 Serial Peripheral Interfaces ... 29

9.2.1 SPI1 .. 30
9.2.1.1 SPI1 Master .. 30
9.2.1.2 SPI1 Slave .. 31

9.2.2 SPI2 .. 31
9.3 HCI UART .. 31

9.3.1 SWD Debugging with the HCI UART .. 32
9.3.2 Bypassing the FTDI chip ... 32

9.4 Peripheral UART.. 32
9.5 Broadcom Serial Control (BSC) (Compatible with I2C) .. 34
9.6 NVRAM .. 35

10 Interface Programming Information and Examples .. 36
10.1 GPIO Programming Example .. 36
10.2 SPI1 Master Programming Example .. 38
10.3 SPI1 Slave Programming Example.. 39
10.4 BSC Programming Example .. 40
10.5 PUART Programming Example ... 41
10.6 NVRAM Programming Example .. 42

Appendix A. Power-Save Options ... 43

 Contents

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 3

A.1 Low Power Sleep Mode ... 43
A.2 Deep Sleep Power Save Mode .. 43

References .. 46

Document Revision History .. 47

Worldwide Sales and Design Support .. 48
Products .. 48
PSoC® Solutions ... 48
Cypress Developer Community ... 48
Technical Support .. 48

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 4

About This Document
Purpose and Audience
This document describes the Cypress Wireless Internet Connectivity for Embedded Devices (WICED; pronounced "wick-ed")
CYW920706WCDEVAL evaluation board and provides various pins, jumpers, switches, ports, and test points to access
CYW20706 to perform development, debug, evaluation, and troubleshooting. It also identifies the full complement of
interfaces available on CYW20706 and interface-selection restrictions and consequences. In addition, it provides:

• CYW20706 interface options pertinent to the Cypress CYW920706WCDEVAL reference design

• API programming information examples for configuring various CYW20706 interfaces (SPI, I2C, peripheral UART, and
more).

This document is intended for designers and developers using CYW20706 WICED devices and the CYW920706WCDEVAL
board as a reference design for CYW20706 embedded solutions with an embedded Bluetooth (BT) stack and user-developed
applications using WICED Studio.

Scope
This document details the hardware aspects of the CYW920706WCDEVAL board and interface selection considerations for
the CYW20706 device. For more information on the CYW20706 hardware, see the CYW20706 datasheet (CYW20706
Embedded Bluetooth 4.2 SoC with MCU, Bluetooth Transceiver, and Baseband Processor [1]). For information on using the
board with WICED Studio to develop embedded custom applications, see the WICED CYW920706WCDEVAL Kit Guide [2].

Several paragraphs in the document refer the reader to WICED Studio files, variables and data structures that are not
described in this document. For information on the variables and data structures mentioned in this document, see the WICED
Studio API documentation that is provided with WICED Studio.

Acronyms and Abbreviations
In most cases, acronyms and abbreviations are defined on first use.

For a comprehensive list of acronyms and other terms used in Cypress documents, go to www.cypress.com/glossary.

IoT Resources and Technical Support
Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for
your design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide
range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information,
and software updates. Customers can acquire technical documentation and software from the Cypress Support Community
website (http://community.cypress.com/).

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 5

1 Product Description
CYW20706 is a monolithic, single chip, Bluetooth (BT) dual-mode System-on-a-Chip (SoC) that includes a baseband
processor, an ARM® Cortex™-M3 processor and an integrated transceiver. It is a fully embedded device running an
embedded BT stack with support for embedded user applications developed with WICED Studio.

The Cypress CYW920706WCDEVAL board (Figure 1-1) is an evaluation board that provides various pins, jumpers, switches,
ports, and test points to access CYW20706 to perform debug, evaluation, and troubleshooting.

Figure 1-1. CYW920706WCDEVAL Board

 0BProduct Description

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 6

Figure 1-2 shows the pins connected to the user accessible headers on the board.

Figure 1-2. User Accessible headers

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 7

2 Board Layout
Figure 2-1 shows the location of key jumpers and switches on the CYW920706WCDEVAL board.

Figure 2-1. CYW920706WCDEVAL Evaluation Board Layout and Component Locations

Note: Jumpers which are shorted by default are identified in red.

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 8

3 Board Block Diagram
Figure 3-1 shows the block diagram of CYW20706 connections on the CYW920706WCDEVAL board.

Figure 3-1 Board Block Diagram

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 9

4 Jumper and DIP Switch Settings
Figure 2-1 shows the location for SW5, a switch that is used to configure Peripheral UART (PUART). Settings are shown in
Table 4-1.

DIP Default State Description

1 OFF Set this switch ON to use P2 as PUART_RX

2 ON Set this switch ON to use P33 as PUART_RX

3 OFF Set this switch ON to use P0 as PUART_TX

4 ON Set this switch ON to use P31 as PUART_TX

5 OFF Set this switch ON to use P3 as PUART_CTS

6 OFF Set this switch ON to use P30 as PUART_RTS

Note: Only one of DIP switches 1 or 2 should be turned ON at once (but never both), and only one of DIP switches 3 or 4 should be turned
ON at once (but never both).

Table 4-1. SW5 DIP Switch Settings

Figure 2-1 shows the location for SW7, a switch that is used to configure serial flash and authentication IC connections.
Settings are shown in Table 4-2.

DIP Default State Description

Serial Flash

1 ON Set this switch ON to power the serial flash from VDDIO

2 ON Set this switch ON to enable the SPI MISO connection between CYW20706 and serial flash

3 ON Set this switch ON to enable the SPI MOSI connection between CYW20706 and serial flash

4 ON Set this switch ON to enable the SPI CS connection between CYW20706 and serial flash

5 ON Set this switch ON to enable the SPI CLK connection between CYW20706 and serial flash

Auth IC

6 OFF Set this switch ON to power the authentication IC from VDDIO

7 OFF Set this switch ON to enable the I2C SDA connection between CYW20706 and authentication IC

8 OFF Set this switch ON to enable the I2C SCL connection between CYW20706 and authentication IC

Table 4-2. SW7 DIP Switch Settings

Authentication IC U4 is DNI by default. If the user decides to install this, then SW7 positions 6-8 must be placed in the ON
position for proper connection. If authentication IC is not used, set these to the OFF position.

See Figure 2-1 for the jumpers and switch locations. Table 4-3 shows the CYW920706WCDEVAL board jumper and switch
settings.

 Jumper and DIP Switch Settings

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 10

Jumper/Switch Default State Comment

J3 Shorted Short this Jumper to supply 3.3V to the IO Domain (VDDIO) of the 0270x. Also use this jumper to
measure the current consumption of the IO Domain.

J9 Shorted Input of the internal 1.2V LDO, use this jumper to measure current consumption at the input of the
1.2V LDO

J10 Shorted Input of the internal 2.5V LDO, use this jumper to measure current consumption at the input of the
2.5V LDO

J12 Shorted Output of the internal 1.2V LDO, use this jumper to measure current consumption at the output of
the 1.2V LDO

J17 Shorted Supplies power to all the power rails in the 20706, use this jumper to measure current consumption
of the entire 20706 chip.

J26 1 and 2 Shorted Connects CYW20706 BT_UART_RXD to FTDI TX

J26 3 and 4 Shorted Connects CYW20706 BT_UART_TXD to FTDI RX

J26 5 and 6 Shorted Connects CYW20706 BT_UART_CTS to FTDI RTS

J26 7 and 8 Shorted Connects CYW20706 BT_UART_RTS to FTDI CTS

J29 Open Short this jumper to connect GPIO P15 to the RX of the second FTDI com port for debugging
purposes

J30 Open Short this jumper to connect GPIO P15 to VDDIO for battery monitoring applications.

SW2 – Reset Button

SW3 – Recovery Button

SW4 3 ON Power switch positions: 1: OFF, 3: ON

SW5 See Table 4-1 Serial Flash Connections

SW6 – User button

SW7 See Table 4-2 Authentication IC Connections

Table 4-3. CYW920706WCDEVAL Board Jumper and Switch Settings

Table 4-4 shows the CYW920706WCDEVAL board headers.

Header Description

J18 CYW test header - SPI, UART

J19 CYW test header – GPIO

J20 Arduino shield connection

J21 Arduino shield connection

J22 CYW test header: GPIO, Reset, I2S, PWM

J23 Arduino shield connection

J24 Arduino shield connection

J27 10 Pin JTAG connector

Table 4-4. CYW920706WCDEVAL Board Headers

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 11

5 Current Consumption Measurement
Table 5-1 shows the low-power Bluetooth classic mode current measured for different sleep modes in three different
scenarios.

Mode J9 (1.2V Core + Radio) J3 (IO Domain) J9 +J3 Units

No scans enabled + sleep mode 0.114 0.084 0.198 mA

Page scan enabled + sleep mode 0.328 0.083 0.411 mA

Sniff link 1.28s, 4 attempts, 0 timeout, no scans + sleep mode 1.250 0.084 1.334 mA

Table 5-1. Low-Power Bluetooth Current

Table 5-2 lists the jumper locations for measuring current.

Note: Remove the listed jumper and measure the current across the exposed pins.

To Measure... Remove the Jumper and Measure Across...

IO Domain (VDDIO) J3

1.2V LDO input (1.2V Core + Radio) J9

2.5V LDO input (2.5V LDO + On Chip Power Amplifier) J10

1.2V LDO output (1.2V Core only) J12

Total Current consumed by CYW20706 J17

Table 5-2. Current Measurements

 Schematics

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 12

6 Schematics

Figure 6-1. CYW920706WCDEVAL Baseband Schematic

 Schematics

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 13

Figure 6-2. CYW920706WCDEVAL RF Schematic

 Schematics

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 14

Figure 6-3. CYW920706WCDEVAL Power & Headers Schematic

 Schematics

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 15

Figure 6-4. CYW920706WCDEVAL USB to UART Interface Schematic

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 16

7 CYW20706 Interfaces
The package CYW20706 is available in may have fewer GPIOs than the die. Some of these GPIOs are fixed function IOs
while others are reconfigurable for different interfaces. To accommodate its various applications, interface selection is
accomplished through a combination of signal routing to CYW20706 and programming using the WICED API described in later
sections.

CYW20706 interfaces are presented as two interface sets: fixed and selectable. The fixed interfaces are those with dedicated
pins and, thus, are always available. The selectable interfaces are those that a board designer chooses to use from a superset
of possible interfaces that CYW20706 supports.

See Section 7.1 “Fixed Interfaces” for more information on the fixed interfaces. See Section 7.2 “Selectable Interfaces” for
more information on the set of interfaces from which board designers can choose.

7.1 Fixed Interfaces
Table 7-1 shows the fixed straps and digital I/O interfaces of CYW20706. In contrast to the Selectable Interfaces, the fixed
interfaces of CYW20706 have dedicated pins.

Strap or Interface Purpose Signals Pins Notes

XTAL frequency selection1 BT_XTAL_STRAP_0 G3

F2 G3 XTAL

0 0 40 MHz

0 1 24 MHz

1 0 20 MHz

1 1 Read from
NV memory

BT_XTAL_STRAP_1 F2

Device reset RST_N A6 Active LOW reset input

OTP usage BT_OTP_3P3V_ON G2 Pull HIGH if OTP is used; otherwise, pull LOW.

HCI UART BT_UART_RXD F5 HCI UART receive data (or SWDIO, see 9.3.1)

BT_UART_TXD F4 HCI UART transmit data (or SWDCLK, see
9.3.1)

BT_UART_RTS_N F3 HCI UART request-to-send input

BT_UART_CTS_N G4 HCI UART clear-to-send input

Serial Peripheral Interface (SPI) or I2C, sometimes known as
Broadcom Serial Control (BSC)1

SPI2_MISO_I2C_SCL2 D8 SPI MISO

SPI2_MOSI_I2C_SDA2 E8 SPI MOSI

SPI2_CLK E7 SPI clock output

SPI2_CSN D7 SPI active LOW chip select output

Table 7-1. Fixed Straps and Digital I/O Interfaces

1 Use the SPI2 interface for applications where the CYW20706 firmware image is to be loaded from onboard serial flash. The SPI2
interface is sometimes referred to as Spiffy2.
2 Although the SPI2_MISO_I2C_SCL and SPI2_MOSI_I2C_SDA signal names imply support for an I2C-compatible interface via pins D8
and E8, an I2C-compatible interface is not usable via these pins since the SPI signals are connected to the serial flash on this hardware.
CYW20706 does support an I2C-compatible interface (BSC interface) via pins A8 and C7 (including pull ups) or B7 and C7 (see Section
9.5 “Broadcom Serial Control”).

 6BCYW20706 Interfaces

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 17

7.2 Selectable Interfaces
CYW20706 supports several other interfaces besides those identified in Fixed Interfaces. Although CYW20706 supports
several other interfaces, it cannot support all of its interfaces in a single hardware board design. Therefore, board designers
must select which interfaces to use in a given design.

The key limitation on the selectable interfaces is the number of available digital I/O pins. The selectable interfaces are
multiplexed to 12 digital I/O pins. The 12 digital I/O pins are: A8, B5, B6, B7, C5, C6, C7, C8, D6, F7, F8, and G8.

The following interfaces represent the superset of interfaces supported by CYW20706:

 Multiple general purpose I/Os (GPIOs), identified as GPIO_Pxx, and also referred to as the low leakage LHL3 GPIOs
(LHL is a low leakage power island for GPIOs on the chip). For more information on GPIO signals, see Section 8 “GPIO
Information”.

 Four PWM outputs

 A peripheral UART (or PUART). This PUART is for attachment to microcontroller units (MCUs) or onboard peripherals.

 A Serial Peripheral Interface (SPI). This is a second SPI interface that is identified as SPI1 (and sometimes called
Spiffy1). It can be a master or a slave.

 Multiple A/D converter inputs

 Multiple auxiliary clock outputs

 An infrared learning (IR_RX) input and playback (IR_TX) output

 A keyboard scan output (KSO3)

 Four optical control outputs (QOC0 through QOC3) for use in quadrature or rotary encoders.\

 A 60 Hz input (60Hz_main) to a zero-crossing detector

 Two triac control outputs

 Two external Transmit/Receive (T/R) switch control outputs (TX_PD and ~TX_PD)

 Multiple inputs from quadrature detectors (QDX0, QDX1, QDY0, QDY1, QDZ0, and QDZ1)

 A shared PCM or I2S interface

 A Bluetooth clock request (BT_CLK_REQ) for a shared-clock application

 A Low Power Oscillator (LPO) input

 An Inter-Integrated Circuit (I2C) serial interface, also called Broadcom Serial Control (BSC) interface

These selectable interfaces are mapped to the 12 digital I/O pins. Many signal functions are supported at each pin, but a
system designer must select a single function per pin. See Section 8 “GPIO Information” for detailed information on signal-
function to I/O pin assignments.

7.3 Selectable Interfaces Supported by CYW920706WCDEVAL
The CYW920706WCDEVAL board supports all of the fixed interfaces (see Section 7.1 ”Fixed Interfaces”) but only supports a
subset of the selectable interfaces (see Section 7.2 “Selectable Interfaces”) supported by CYW20706.

The CYW920706WCDEVAL board supports the following selectable interfaces:

 SPI1 master

 PUART

 I2S, I2C, PWM, PCM

 BT_GPIO_P5/P15 connected via jumper to VDDIO which can be used for voltage detect

 BT_GPIO_P4/P6 to control external LEDs

 BT_GPIO_P7 to monitor SW6 button depression

 6BCYW20706 Interfaces

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 18

Table 7-2 shows which of the selectable CYW20706 interfaces are supported on the CYW920706WCDEVAL board.

CYW20706
Pin Schematic Signal Name Bonded

GPIOs

Description

Default
State I/O Type Signal Function and Notes

A8 I2S_PCM_OUT/P3/P29/P35 I2S_PCM_OUT LOW3 O I2S_DO/PCM_OUT. To use I2S, set SW5-5 to the OFF position, from the SDK you need to configure
the pcm_config structure pointer with the mode role set and use the function
wiced_hal_set_pcm_config to select the I2S function. I/Os P3, P29, and P35 must remain disabled.
This pin can be configured as I2C SCL by calling
wiced_hal_i2c_init(WICED_I2C_SDA_I2S_DOUT_PCM_OUT_SCL_I2S_DIN_PCM_IN) which
selects the I2C_SCL on I2S_PCM_OUT.

P3 Floating I/O This can be used as PUART_CTS by setting SW5-5 to the ON position. It can be monitored at J22-8
if the I2S/PCM function is deselected, and I/Os P29 and P35 are disabled.

P29 Floating I/O No specific function defined. It can be monitored at J22-8 if the I2S/PCM function is deselected, and
I/Os P3 and P35 are disabled.

P35 Floating I/O No specific function defined. It can be monitored at J22-8 if the I2S/PCM function is deselected, and
P3 and P29 are I/O disabled. This pin can be configured as I2C SDA by calling
wiced_hal_i2c_init(WICED_I2C_SDA_P35_SCL_P37) which selects the I2C_SDA on P35

B5 BT_GPIO_5/P15 BT_GPIO_5 HIGH3 I/O General Purpose I/O

P15 Floating O GPIO to monitor battery or general-purpose I/O

B6 BT_GPIO_6/P11/P26 BT_GPIO_6 LOW3 I/O General Purpose I/O

P11 Floating I/O No specific function defined. It can be monitored at J22-4 if I/O P26 is disabled.

P26 Floating O LED D10 on/off control that can sink 16 mA and be modulated using the PWM0 circuit on
CYW20706. To use, disable I/O P11.

B7 I2S_PCM_CLK/P2/P28/P37 I2S_PCM_CLK LOW3 O I2S_CLK. To use, set SW5-1 to the OFF position, select the I2S function, and disable I/Os P2, P28,
and P37.

P2 Floating I/O PUART_RX. To use, set SW5-1 to the ON position, SW5-2 to the OFF position, and
disable I/Os P28 and P37. It can be monitored at J22-5 if the I2S/PCM function is deselected with the
mentioned SW5 settings.

P28 Floating I/O No specific function defined. It can be monitored at J22-5 if the I2S/PCM function is deselected, and
I/Os P2 and P37 are disabled.

3 CYW20706 has an internal 40K pull down for LOW state and 40K pull up for HIGH state. If the pin needs to be driven to the opposite HIGH state for an application, one of the other connected
 GPIOs should be configured to drive it as needed.

 6BCYW20706 Interfaces

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 19

CYW20706
Pin Schematic Signal Name Bonded

GPIOs

Description

Default
State I/O Type Signal Function and Notes

P37 Floating I/O No specific function defined. It can be monitored at J22-5 if the I2S/PCM function is deselected, and
I/Os P2 and P28 are disabled. This pin can be configured as I2C SCL by configuring
wiced_hal_i2c_init(WICED_I2C_SDA_P35_SCL_P37) which selects the I2C_SCL on P37

C5 BT_GPIO_3/P27/P33 BT_GPIO_3 LOW3 I/O General Purpose I/O

P27 Floating O (master)
I (slave)

SPI1_MOSI (master or slave)
To use, set SW5-2 to the OFF position and disable I/O P33.

P33 Floating I PUART_RX. To use, set SW5-1 to the OFF position, SW5-2 to the ON position, and disable I/O P27.

C6 BT_GPIO_7/P30 BT_GPIO_7 LOW3 I/O General Purpose I/O

P30 Floating I SW6 button input. This can also be configured as PUART_RTS by setting SW5-6 to the ON position
since it is internally muxed on the same pin.

C7 I2S_PCM_IN/P12 I2S_PCM_IN LOW3 I I2S_DI. To use, select the I2S function, and disable I/O P12. This pin can be configured as I2C_SDA
by calling wiced_hal_i2c_init(WICED_I2C_SDA_I2S_DOUT_PCM_OUT_SCL_I2S_DIN_PCM_IN)
which selects the I2C_SDA on I2S_PCM_IN.

P12 Floating I/O No specific function defined. It can be monitored at J22-7 if the I2S/PCM function is deselected.

C8 I2S_WS_PCM_SYNC/P0/P34 I2S_WS_PCM_SYNC LOW3 I/O I2S_WS. To use, set SW5-3 to the OFF position, select the I2S function, and disable I/Os P0 and
P34.

P0 Floating I/O PUART_TX. To use, set SW5-3 to the ON position, SW5-4 to the OFF position, and
disable I/O P34. It can be monitored at J22-6 if the I2S/PCM function is deselected and I/O P34 is
disabled.

P34 Floating I/O No specific function defined. It can be monitored at J22-6 if the I2S/PCM function is deselected and
I/O P0 is disabled.

D6 BT_GPIO_4/P6/LPO_IN/P31 BT_GPIO_4 HIGH3 I/O General Purpose I/O

P6 Floating I/O LED D9 on/off control that can be modulated using the PWM2 circuit on CYW20706. To use, disable
I/O P31.

P31 Floating O PUART_TX. To use, set SW5-3 to the OFF position, set SW5-4 to the ON position, and disable I/O
P6.

F7 BT_HOST_WAKE/P25/P32 BT_HOST_WAKE LOW3 O A signal from CYW20706 device to the host indicating that the Bluetooth device requires attention

 6BCYW20706 Interfaces

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 20

CYW20706
Pin Schematic Signal Name Bonded

GPIOs

Description

Default
State I/O Type Signal Function and Notes

P25 Floating I (master)
O (slave)

SPI1_MISO (master or slave). To use, disable I/O P32.

P32 Floating I/O No specific function defined. It can be monitored at J19-4 if I/O P25 is disabled.

F8 BT_DEV_WAKE/P36/P38 BT_DEV_WAKE LOW3 I A signal from the host to CYW20706 that the host requires attention.

 P36 Floating O (master)
I (slave)

GPIO_P36 programmed as SPI1_CS. To use, disable I/O P38.

 P38 Floating I/O No specific function defined. It can be monitored at J19-6 if I/O P36 is disabled.

G8 BT_CLK_REQ/P4/P24 P4 Floating I/O No specific function defined. It can be monitored at J19-3 if I/O P24 is disabled.

 P24 Floating I/O SPI1_CLK (master or slave). To use, disable I/O P4.

Table 7-2. CYW920706WCDEVAL Board Interface Summary

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 21

8 GPIO Information
8.1 GPIO_Pxx
The Cypress WICED Studio API provides configuration support for up to 40 multiplexed GPIOs (represented as
WICED_GPIO_P0 through WICED_GPIO_P39). CYW20706 uses 23 of these multiplexed GPIOs. The assignment of the
multiplexed GPIOs to physical device pins is restricted from certain digital I/O pins when certain interfaces or signal functional
are used.

Table 8-1 shows CYW20706 interfaces and signal functions that, if used in a design, will restrict the set of digital I/O pins
available for assigning GPIOs.

If This Interface or Signal Function Is Used Then These Pins Cannot Be Used for GPIO_Pxx Assignments

I2S/PCM A8, B7, C7, and C8

BT_CLK_REQ G8

BT_DEV_WAKE1 F8

BT_HOST_WAKE1 F7

LPO_IN D6

Table 8-1. Key Interface (or Signal Function) Pin Assignments

These signal functions can be used to wake CYW20706 from sleep modes by an external MCU and for CYW20706 to wake
an external MCU. Embedded applications have better options for sleep and wake operations rather than using a dedicated
digital I/O pin, see Appendix A “Power-Save Options”.

1 Unused GPIOs will be HI-Z (I/O disabled) after application initialization.

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 22

8.1.1 Multiplexed GPIO_Pxx Interface Summary
Table 8-2 provides an interface summary of the 23 multiplexed GPIOs used by CYW20706. The description column provides
the potential signal functions of each GPIO and the associated I/O type of each signal function.

CYW20706 Pin GPIO

Description

I/O Type1 Signal Function Options

A8 P3 I/O General purpose, user-defined GPIO

I X-coordinate output from a quadrature detector (QDX1)

I Peripheral UART CTS input (PUART_CTS)

O SPI1_CLK (master)

I SPI1_CLK (slave)

P292 I/O General purpose, user-defined GPIO

O Optical control output (QOC3)

I A/D converter input 10

O PWM output (PWM3)

P35 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 4)

I Y-coordinate output from a quadrature detector (QDY1)

I Peripheral UART CTS input (PUART_CTS)

I/O BSC SDA (I2C_SDA)

B5 P15 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 20)

I Infrared learning input (IR_RX)

I 60 Hz input (60Hz_main) to a zero-crossing detector.

B6 P11 I/O General purpose, user-defined GPIO

I Keyboard scan output (KSO3)

I A/D converter input (A/D input 24)

P262 I/O General purpose, user-defined GPIO

I SPI1_CS (slave)

O Optical control output (QOC0)

O Triac control 1

O PWM output (PWM0)

1 Unused GPIOs will be HI-Z (I/O disabled) after application initialization.
2 This GPIO can source and sink 16 mA at 3.3 V or 8 mA at 1.8 V. For all other GPIOs, the maximum is 8 mA at 3.3 V and 4 mA at
1.8 V.

 7BGPIO Information

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 23

CYW20706 Pin GPIO

Description

I/O Type1 Signal Function Options

B7 P2 I/O General purpose, user-defined GPIO

I X-coordinate output from a quadrature detector (QDX0)

I Peripheral UART
 RX input (PUART_RX)

I SPI1_CS (slave)

O SPI1_MOSI (master)

P282 I/O General purpose, user-defined GPIO

O Optical control output (QOC2)

I A/D converter input (A/D input 11)

O PWM output (PWM2)

P37 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 2)

I Z-coordinate output from a quadrature detector (QDZ1)

O SPI1_MISO (slave)

O Auxiliary clock output (ACLK1)

O BSC SCL (I2C_SCL)

C5 P272 I/O General purpose, user-defined GPIO

O SPI1_MOSI (master)

I SPI1_MOSI (slave)

O Optical control output (QOC1)

O Triac control 2

O PWM output (PWM1)

P33 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 6)

I X-coordinate output from a quadrature detector (QDX1)

I SPI1_MOSI (slave)

O Auxiliary clock output (ACLK1)

I Peripheral UART RX input (PUART_RX)

C6 P30 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 9)

O Peripheral UART RTS input (PUART_RTS)

C7 P12 I/O General purpose, user-defined GPIO

 7BGPIO Information

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 24

CYW20706 Pin GPIO

Description

I/O Type1 Signal Function Options

I A/D converter input (A/D input 23)

O BSC SCL (I2C_SCL)

C8 P0 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 29)

O Peripheral UART TX output (PUART_TX)

O SPI1_MOSI (master output)

I SPI1_MOSI (slave input)

I Infrared learning input (IR_RX)

I 60 Hz input (60Hz_main) to a zero-crossing detector.

P34 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 5)

I Y-coordinate output from a quadrature detector (QDY0)

I Peripheral UART RX input (PUART_RX)

O T/R switch control (TX_PD)

D6 P6 I/O General purpose, user-defined GPIO

I Z-coordinate output from a quadrature detector (QDZ0)

O Peripheral UART
 RTS input (PUART_RTS)

I SPI1_CS (slave)

I 60 Hz input (60Hz_main) to a zero-crossing detector.

P31 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 8)

O Peripheral UART TX output (PUART_TX)

F7 P25 I/O General purpose, user-defined GPIO

I SPI1_MISO (master)

O SPI1_MISO (slave)

I Peripheral UART RX input (PUART_RX)

P32 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 7)

I X-coordinate output from a quadrature detector (QDX0)

I SPI1_CS (slave only)

O Auxiliary clock output (ACLK0)

 7BGPIO Information

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 25

CYW20706 Pin GPIO

Description

I/O Type1 Signal Function Options

O Peripheral UART TX output (PUART_TX)

F8 P36 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 3)

I Z-coordinate output from a quadrature detector (QDZ0)

O SPI1_CLK (master)

I SPI1_CLK (slave)

O Auxiliary clock output (ACLK0)

O T/R switch control (~TX_PD)

P38 I/O General purpose, user-defined GPIO

I A/D converter input (A/D input 1)

O SPI1_MOSI (master)

I SPI1_MOSI (slave)

O Infrared learning output playback (IR_TX)

G8 P4 I/O General purpose, user-defined GPIO

I Y-coordinate output from a quadrature detector (QDY0)

I Peripheral UART RX input (PUART_RX)

O SPI1_MOSI (master)

I SPI1_MOSI (slave)

O Infrared learning output playback (IR_TX)

P24 I/O General purpose, user-defined GPIO

O SPI1_CLK (master)

I SPI1_CLK (slave)

O Peripheral UART TX output (PUART_TX)

Table 8-2. CYW20706 Multiplexed GPIO_Pxx Interface Summary

Note: Table 8-2 provides GPIO information for the full capabilities of CYW20706. Some CYW20706-based modules may not
support all GPIOs. Check the module schematic and other documentation to determine which GPIOs are available.

8.1.2 Digital I/O Pin Interface Mapping
Table 8-3 shows the mapping of CYW20706 interfaces to the 12 digital I/O pins and the available GPIO_Pxx assignments.
This is the same information explained in Table 8-2, but in a more compact format for easier reference with the following
description of the selection choices available for an example pin.

To help understand Table 8-3 consider the shaded portion of the table, which pertains to the signal-function selection for pin
D6. If an alphanumeric string or an X appears in a signal-function column for a given pin, then that pin can support the signal
function. Using this logic, pin D6 can be configured to support one signal function from the following set of signal functions:

 7BGPIO Information

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 26

• GPIO_P6 (a general-purpose user-defined I/O)

• GPIO_P31 (a general-purpose user-defined I/O)

• PUART_TX (a peripheral UART TX output multiplexed to GPIO_P31)

• PUART_RTS (a peripheral UART request-to-send output multiplexed to GPIO_P6)

• SPI1_CS (a SPI interface chip-select input multiplexed to GPIO_P6)

• A/D converter input (an A/D converter input multiplexed to GPIO_P31)

• 60Hz_mains input (a zero-crossing detector input multiplexed to GPIO_P6)

• Quadrature decoder signal (the output of a quadrature decoder multiplexed to GPIO_P6 as an input)

• External LPO input (LPO_IN) (an external LPO input connected to pin D6). No GPIOs are used in this case.

A system designer will select one signal function from the set of possible signal functions available at pin D6. For example, if
the system design requires a peripheral UART, the PUART_TX signal function might be assigned and configured to pin D6
(using GPIO_P31) and the other LHL GPIO, P6 in this case, is configured as input and output disabled See Section 9.4
“Peripheral UART” for details.

For a more detailed example that assigns pins to the other PUART signal functions as well as signal function assignments for
the remaining pins in a system design, see Section 10 “Interface Programming Information and Examples”.

 7BGPIO Information

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 27

Ju
m

pe
r P

os
iti

on

G
PI

O
_P

xx

PU
A

R
T_

R
X

PU
A

R
T_

TX

PU
A

R
T_

R
TS

PU
A

R
T_

C
TS

SP
I1

_C
LK

 (M
as

te
r

an
d

Sl
av

e)

SP
I1

_C
S

(S
la

ve
)

SP
I1

_M
O

SI
 (M

as
te

r
an

d
Sl

av
e)

SP
I1

_M
IS

O
 (M

as
te

r
an

d
Sl

av
e)

SP
I1

_M
O

SI
 (

Sl
av

e)

SP
I1

_M
IS

O
 (

Sl
av

e)

A
/D

 In
pu

t

A
ux

ili
ar

y
C

lo
ck

 O
ut

pu
t (

A
CL

K
0)

A
ux

ili
ar

y
C

lo
ck

 O
ut

pu
t (

A
CL

K
1)

IR
_R

X

IR
_T

X

K
SO

3

PW
M

0

PW
M

1

PW
M

2

PW
M

3

Q
O

C
0

Q
O

C
1

Q
O

C
2

Q
O

C
3

60
H

z_
M

ai
n

Tr
ia

c
Co

nt
ro

l

TX
_P

D
 a

nd
 ~

TX
_P

D

Q
D

X0

Q
D

Y0

Q
D

Z0

Q
D

X1

Q
D

Y1

Q
D

Z1

 I2
S_

D
O

/P
CM

_O
U

T

I2
S_

C
LK

/P
CM

_C
LK

I2
S_

D
I/P

C
M

_I
N

I2
S_

W
S/

PC
M

_S
YN

C

B
T_

C
LK

_R
EQ

B
T_

D
EV

_W
A

K
E

B
T_

H
O

ST
_W

A
K

E

LP
O

_I
N

B
SC

_S
D

A

B
SC

_C
LK

Pi
ns

A8
J22.8/
J23.6/
J21.2

P3
P29
P35

P3

P35

P3

P29
P35

P29

P29

P3

P35

 X

P35

B5 J22.3/
J24.1

P15

P15

P15

P15

B6 J22.4/
J23.5

P11
P26

P26

P11

P11

P26

P26

P26

B7 J22.5

P2
P28
P37

P2

P2

P2*

P37

P28
P37

P37

P28

P28

P2

P37

 X

P37

C5
J19.5/
J21.7

P33
P27

P33

P27

P33

P33

P33

P27

P27

P27

P33

C6 J19.2/
J23.4

P30

P30

P30

C7
J22.7/
J23.5/
J21.1

P12

P12

 X

C8 J22.6/
J23.6

P0

P34

P34

P0

P0

P0
P34

P0

P0

P34

P34

 X

D6 J19.1

P6
P31

P31

P6

P6

P31

P6

P6

 X

F7
J19.4/
J21.6

P25
P32

P25

P32

P32

P25

P32

P32

P32

 X

F8
J19.6/
J21.8

P36
P38

P36

P38

P36
P38

P36

P38

P36

P36

 X

G8
J19.3/
J21.5

P4

P24

P4

P24

P24

P4

P4

P4

 X

Table 8-3. Interface Mapping to the 12 Available Digital I/O Pins

* This instance of P2 is SPI1_MOSI (master only).

An X in the red rectangle indicates that the associated signal functions do not involve any LHL GPIO signals.

The LHL GPIOs in the green rectangle indicate the associated signal functions are available only in those LHL GPIOs.

PRELIMIN ARY

 7BGPIO Information

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 28

8.2 LHL GPIO Capabilities
The LHL GPIOs have the following capabilities:

 Each can be programmed to serve one of the signal functions associated with it (see Multiplexed GPIO_Pxx Interface
Summary or Table 8-2).

 All can be input and output disabled (HI-Z), input enabled, or output enabled.

 An internal pull-up or pull-down can be configured on input-enabled GPIOs.

 An output-enabled GPIO that is driven HIGH or LOW will remain driven while in the Low Power and Deep Sleep modes.

 All GPIOs, excluding P26–P29, can source or sink up to 8 mA at 3.3 V and 4 mA at 1.8 V.

 GPIOs P26–P29 can source or sink 16 mA at 3.3 V and 8 mA at 1.8 V.

 All GPIOs can be configured for edge (rising/falling/both) or level interrupts.

Below is an example GPIO configuration for an input with a resistive pulldown that is enabled, and a rising edge interrupt:

wiced_hal_gpio_configure_pin(gpio_num, (GPIO_INPUT_ENABLE | GPIO_PULL_DOWN |
 GPIO_EN_INT_RISING_EDGE),GPIO_PIN_OUTPUT_LOW);

Application-level interrupt handlers can be configured to handle interrupts in the application thread context and interrupts can
be configured to wake the system from the Low Power and Deep Sleep modes. For more information on the Low Power and
Deep Sleep modes, see Appendix A “Power-Save Options”.

Note: See Section 10.1 “GPIO Programming Example”, for GPIO programming information, including the enabling and
disabling of inputs and outputs, edge triggering, and interrupt configuration.

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 29

9 Interface Signal Function Selection Restrictions and
Considerations

This section provides signal-function selection restrictions and/or general information associated with the following CYW20706
interfaces:

 I2S and PCM

 SPI1

 SPI2

 HCI UART

 Peripheral UART

 Broadcom Serial Control (BSC) (Compatible with I2C)

 NVRAM

9.1 I2S and PCM
CYW20706 contains I2S and PCM circuit blocks that share a common signal-routing interface.

Table 9-1 shows the shared I2S and PCM interface in pin order. It also shows which GPIO_Pxx cannot be used if the I2S or
PCM circuit blocks are used in a board design.

CYW20706 Pin Signal
When Interface Used, Do Not Use the

Following GPIO_Pxx

A8 I2S_DO or PCM_OUT

P0, P2, P3, P12, P28, P29, P34P35,
and P37

B7 I2S_CLK or PCM_CLK

C7 I2S_DI or PCM_IN

C8 I2S_WS or PCM_SYNC

Table 9-1. Shared I2S and PCM Interface and GPIO_Pxx Usage Restrictions

9.2 Serial Peripheral Interfaces
CYW20706 supports two serial peripheral interface (SPI) blocks: SPI1 (also known as Spiffy1) and SPI2 (also known as
Spiffy2).

The routing of the SPI1 interface is multiplexed using the GPIO_Pxx supported by CYW20706 (see Section 8.1 “GPIO_Pxx”).

As shown in Table 7-1, the SPI2 interface has a fixed signal routing to CYW20706 pins; therefore, it does not require any
device GPIO support.

The WICED Studio API allows configuring and controlling both SPI interfaces by providing functions for:

 Clock control

 Mode control

 Data transfer method (half or full duplex)

For more information on the SPI1 interface, see SPI1.

For more information on the SPI2 interface, see SPI2.

 Interface Signal Function Selection Restrictions and Considerations

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 30

9.2.1 SPI1
The application has full control of the SPI1 interface. The SPI1 interface supports:

 SPI clock modes 0 through 4.

 A maximum transaction size of 254 bytes.

 A maximum clock speed of 12 MHz for all I/O supply levels.

Note: Running the SPI clock at speeds above 12 MHz can lead to undesired behavior.

 Configuration as either a master or a slave.

SPI1 bus-configuration options are detailed in the SPI1 Master and SPI1 Slave sections.

9.2.1.1 SPI1 Master
With SPI1 configured as a master, multiple slaves can be connected to the same bus, where the clock (SPI1_CLK), data input
(SPI1_MISO), and data output (SPI1_MOSI) lines comprise the bus.

An LHL GPIO signal will need to be assigned to source each required slave chip-select output.

The application controls Chip Select (CS) line assertion and de-assertion and can use the CS line to optimize transactions
greater than 254 bytes.

Note: The software application controls the chip selects using a GPIO driver provided by the WICED Studio API. See Section
10 “Interface Programming Information and Examples” for more information.

Table 9-2 shows CYW20706 SPI1 master bus-configuration options.

Option

SPI1_CLK SPI1_MOSI SPI1_MISO

Pin LHL GPIOPxx Pin LHL GPIO Pxx Pin LHL GPIO Pxx

1 G8 P24 C5 P27 F7 P25

2 G8 P24 F8 P38 F7 P25

3 F8 P36 C5 P27 F7 P25

Table 9-2. CYW20706 SPI1 Master Bus-Configuration Options

Note: The RX signal of a peripheral UART (PUART) has certain restrictions if included in a system design that also uses the
SPI1 interface. See Section 9.4 “Peripheral UART” to understand how this restriction affects the bus configuration options of
both interfaces.

For a SPI1 master programming example, see Section 10.2 “SPI1 Master Programming Example”.

 Interface Signal Function Selection Restrictions and Considerations

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 31

9.2.1.2 SPI1 Slave
Table 9-3 shows CYW20706 SPI1 slave bus-configuration options.

Option

SPI1_CLK SPI1_MOSI SPI1_MISO

Pin LHL GPIO Pxx Pin LHL GPIO Pxx Pin LHL GPIO Pxx

1 G8 P24 C5 P27 F7 P25

2 G8 P24 C5 P27 B7 P37

3 G8 P24 C5 P33 F7 P25

4 G8 P24 C5 P33 B7 P37

5 G8 P24 F8 P38 F7 P25

6 G8 P24 F8 P38 B7 P37

7 F8 P36 C5 P27 F7 P25

8 F8 P36 C5 P27 B7 P37

9 F8 P36 C5 P33 F7 P25

10 F8 P36 C5 P33 B7 P37

Table 9-3. CYW20706 SPI1 Slave Bus-Configuration Options

Note: The bus signals of a peripheral UART (PUART) has certain restrictions if included in a system design that also uses the
SPI1 interface. See Section 9.4 “Peripheral UART” to understand how this restriction affects the bus configuration options of
both interfaces.

For a SPI1 slave programming example, see Section 10.3 “SPI1 Slave Programming Example”.

9.2.2 SPI2
The SPI2 interface is provided as a CYW20706 connection to nonvolatile memory for accessing configuration, patches,
application code, and application data.

The SPI2 interface supports:

 SPI clock modes 0 through 4.

 A maximum transaction size of 254 bytes.

 A maximum clock speed of 12 MHz for all I/O supply levels.

 Operation as a master only.

 The fixed-signal interface shown in Table 7-1.

The firmware controls CS line assertion and de-assertion and can use the CS line to optimize transactions greater than 254
bytes.

For information on the API functions that support SPI2 access to attached serial flash or EEPROM, see WICED Studio header
files wiced_hal_sflash.h or wiced_hal_seeprom.h, respectively.

9.3 HCI UART
CYW20706 supports an HCI UART (also referred to as BT_UART). The following information applies to the HCI UART:

 It is primarily used for programming and factory testing, but can also be used to support SWD debugging (see below).

 It is a fixed (non-multiplexed) interface (see Table 7-1).

 Interface Signal Function Selection Restrictions and Considerations

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 32

 In CYW20706, it is available only for application-defined HCI commands and events; it is not for Bluetooth standard HCI
commands. In CYW20706, it is used to communicate with the external MCU and does support Bluetooth standard HCI
commands.

 It supports a maximum baud rate of 3 Mbps. To configure for 3 Mbps use WICED Studio API:

uart_SetBaudrate(0, 0, 3000000)

 Debug messages can be routed to the HCI UART. To do so, use:

 wiced_set_debug_uart(wiced_debug_uart_types_t uart) // with
 // uart=WICED_ROUTE_DEBUG_TO_HCI_UART

The API functions that support the HCI UART are defined in wiced_hci.h.

9.3.1 SWD Debugging with the HCI UART
The HCI UART interface may be used for SWD debugging. When used for debugging, the normal HCI UART function may
not be used. The device FW will auto-detect the presence of an SWD debugger if the SWDIO signal is connected to HCI
UART pin BT_UART_RXD and the SWDCLK signal is connected to BT_UART_TXD. In order to do this on the
CYW920706WCDEVAL board, the FTDI chip must be bypassed as described below in order to connect the HCI UART pins to
the SWD debugger.

9.3.2 Bypassing the FTDI chip
Bypassing the FTDI chip on the CYW920706WCDEVAL board can be necessary in scenarios where the HCI UART interface
needs to be used for another purpose, such as connecting to an external MCU, or if an SWD debugger is connected to the
HCI UART. In those cases, the UART must be disconnected from the FTDI chip to avoid contention. The FTDI chip can be
bypassed and the board can be powered in 2 different ways:

 Powering the board from USB

1. Remove All jumpers on J26

2. Plug in the USB cable to power up the board as usual

 Powering the board using External supply

1. Remove All jumpers on J26

2. Supply 3.3V to TP1

9.4 Peripheral UART
CYW20706 supports a peripheral UART (PUART). The following information applies to the peripheral UART:

 It is primarily used to interface with peripheral devices (for example sensors) or a microcontroller, but can also be used to
support debugging.

 It supports a standard two-wire serial interface (RX and TX) without hardware flow control and a four-wire serial interface
(RX, TX, RTS, and CTS) with hardware flow control.

Note: When hardware flow control is not used, the application is responsible for servicing the TX FIFO before it empties
and the RX FIFO before it fills. If the application does not service the FIFOs, receive-data can be lost and transmit-gaps
can occur.

 The default baud rate is 115200 bps, but other baud rates, such as 19200 bps, 38400 bps, 57600 bps, and 3 Mbps, are
also supported.

 The RX and TX FIFO hardware buffer size is 256 bytes.

 Table 9-4 shows CYW20706 PUART bus-configuration options when a system design also uses the SPI1 interface
provided by CYW20706. In such a system, PUART_RX must be on the same group of pins (referred to as a “pad bank”)
as the SPI1 bus signals. Since a full SPI1 bus can only be supported on a certain group of pins, all SPI1 bus signals and
PUART_RX must be on the “upper pad bank”, which is P24 through P39.

If the CYW20706 SPI1 interface is not used, then several more PUART bus-configuration options (in addition to those shown
in Table 9-4) are available. See Peripheral UART to determine the other available PUART bus-configuration options.

 Interface Signal Function Selection Restrictions and Considerations

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 33

Option
PUART_RX PUART_TX PUART_RTS PUART_CTS

Pin LHL GPIO Pxx Pin LHL GPIO
Pxx Pin LHL GPIO

Pxx Pin LHL GPIO
Pxx

1 C5 P33 C8 P0 C6 P30 A8 P3

2 C5 P33 C8 P0 C6 P30 A8 P35

3 C5 P33 C8 P0 D6 P6 A8 P3

4 C5 P33 C8 P0 D6 P6 A8 P35

5 C5 P33 D6 P31 C6 P30 A8 P3

6 C5 P33 D6 P31 C6 P30 A8 P35

7 C5 P33 F7 P32 C6 P30 A8 P3

8 C5 P33 F7 P32 C6 P30 A8 P35

9 C5 P33 F7 P32 D6 P6 A8 P3

10 C5 P33 F7 P32 D6 P6 A8 P35

11 C5 P33 G8 P24 C6 P30 A8 P3

12 C5 P33 G8 P24 C6 P30 A8 P35

13 C5 P33 G8 P24 D6 P6 A8 P3

14 C5 P33 G8 P24 D6 P6 A8 P35

15 C8 P34 D6 P31 C6 P30 A8 P3

16 C8 P34 D6 P31 C6 P30 A8 P35

17 C8 P34 F7 P32 C6 P30 A8 P3

18 C8 P34 F7 P32 C6 P30 A8 P35

19 C8 P34 F7 P32 D6 P6 A8 P3

20 C8 P34 F7 P32 D6 P6 A8 P35

21 C8 P34 G8 P24 C6 P30 A8 P3

22 C8 P34 G8 P24 C6 P30 A8 P35

23 C8 P34 G8 P24 D6 P6 A8 P3

24 C8 P34 G8 P24 D6 P6 A8 P35

25 F7 P25 C8 P0 C6 P30 A8 P3

26 F7 P25 C8 P0 C6 P30 A8 P35

27 F7 P25 C8 P0 D6 P6 A8 P3

28 F7 P25 C8 P0 D6 P6 A8 P35

29 F7 P25 D6 P31 C6 P30 A8 P3

30 F7 P25 D6 P31 C6 P30 A8 P35

31 F7 P25 G8 P24 C6 P30 A8 P3

 Interface Signal Function Selection Restrictions and Considerations

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 34

Option
PUART_RX PUART_TX PUART_RTS PUART_CTS

Pin LHL GPIO Pxx Pin LHL GPIO
Pxx Pin LHL GPIO

Pxx Pin LHL GPIO
Pxx

32 F7 P25 G8 P24 C6 P30 A8 P35

33 F7 P25 G8 P24 D6 P6 A8 P3

34 F7 P25 G8 P24 D6 P6 A8 P35

Table 9-4. CYW20706 PUART Bus-Configuration Options When PUART_RX Is on the Upper Pad Bank

PUART bus-configuration options presented in Table 9-4 will be further reduced by the selected SPI1 bus-configuration option.

For example, SPI1 master bus-configuration option 2 (from Table 9-2) requires digital I/O pins G8, F8, and F7. Therefore, all
PUART bus-configuration options (in Table 9-4) that use G8, F8, or F7 cannot be used if SPI1 master bus-configuration option
2 is used. So the remaining PUART bus-configuration options become 1–6, 15, and 16.

9.5 Broadcom Serial Control (BSC) (Compatible with I2C)
CYW20706 supports a Broadcom Serial Control (BSC) interface.

Note: BSC is a proprietary Cypress interface that is compatible with I2C.

The following information applies to the BSC interface:

 There are three possible choices for the mapping of BSC signals (SDA and SCL) to CYW20706 pins as shown in the table
below. The parameter used for the wiced_hal_i2c_init function call for each selection of pins is also provided.

SDA SCL Configuration Parameter Name

(Pin C7)
I2S_DIN/PCM_IN/SDA1

(Pin A8)
I2S_DOUT/PCM_OUT/SCL1

WICED_I2C_SDA_I2S_DOUT_PCM_OUT_SCL_I2S_DIN_PCM_IN

(Pin A8) P35 (Pin B7) P37 WICED_I2C_SDA_P35_SCL_P37

(Pin E8) SFLASH_MOSI 2 (Pin D8) SFLASH_MISO2 WICED_I2C_SDA_SFLASH_MOSI_SCL_SFLASH_MISO

Table 9-5. BSC Signals Pins and Parameters

 The interface supports the following transfer types:

 Read

 Write

 Combined write then read

Note: The BSC block generates a repeated START condition between the two parts of a combined transfer.

 The maximum transaction length is 64 bytes.

 Both low-speed and fast-mode slaves are supported at a maximum clock speed of 4000 kbps. The maximum clock speed
is 2400 kbps for slaves that use clock-cycle stretching.

Note: Clock speeds may be less than the speeds indicated above (for example, if an external pull-up resistor is used and
it affects transmission time).

 Multi-master bus mode is not supported and, thus, CYW20706 must be the only bus master.

 Only 7-bit slave addresses are supported.

 Information on the API functions that support the interface is in wiced_hal_i2c.h.

1 These pins have a 4.7K pull up on the CYW920706WCDEVAL kit.
2 These pins cannot be used for BSC by default on the CYW920706CDEVAL kit because they are used for SPI communication with the
serial flash.

 Interface Signal Function Selection Restrictions and Considerations

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 35

For a BSC programming example, see Section 10.4 “BSC Programming Example”.

9.6 NVRAM
CYW20706 has NVRAM, which can be used to save the state of the device while power is off.

For example, an application can use the NVRAM to save the Bluetooth Device address of a paired device. During a future
connection establishment, the application can check whether the connecting device is paired or not.

PRELIMIN ARY

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 36

10 Interface Programming Information and Examples
Note: All code and code references in this section pertain to WICED Studio. Source C files may be found under the
appropriate application folder in the Project Explorer window under 20706-A2_Bluetooth\apps, and header H files which
contain definitions for the #define’s used in the example code may be found under 20706-A2_Bluetooth\include. See [2] for
detailed information on using WICED Studio to build and run the sample applications mentioned in the subsections below,
including viewing application trace message output generated from WICED_BT_TRACE().statements shown in the example
code.

Consider the following information after physically assigning GPIO_Pxx to digital I/O pins:

 When CYW20706 is in the Low Power or Deep Sleep modes, no data can be received from any of its interfaces (SPI,
PUART, etc.). To wake CYW20706, use a GPIO_Pxx configured as an interrupt. Refer to wiced_hal_gpio.h and
gpiodriver.h for the pertinent API functions and constants. See Appendix A “Power-Save Options” for more information
about the sleep modes and power-save options.

 To access GPIO driver services invoke the wiced_hal_gpio_init function during application initialization. This is
independent of other functions and must be called before any other GPIO functions.

 For a sample application that pertains to GPIO API function usage refer to the hal_gpio_app.c file in WICED Studio.

 For information on the API functions that support SPI1 configuration, control, and data exchange, refer to
wiced_hal_pspi.h. To generate chip-select (CS) signals to attached slaves, refer to wiced_hal_gpio.h.

 For information on the API functions that pertain to PUART access, refer to wiced_hal_puart.h.

 The remaining paragraphs in this section provide the following programming examples:

 GPIO Programming Example

 SPI1 Master Programming Example

 SPI1 Slave Programming Example

 BSC Programming Example

 PUART Programming Example

 NVRAM Programming Example

10.1 GPIO Programming Example
The example in this section demonstrates some aspects of GPIO programming, including GPIO driver initialization, configuring
GPIOs for input and output, and registering interrupt handlers. Refer to wiced_hal_gpio.h for the complete set of API functions
that support GPIO programming. See the hal_gpio_app sample application in WICED Studio under 20706-
A2_Bluetooth\apps\snip\hal_gpio for a complete working program using these APIs.

To initialize the GPIO driver, invoke the wiced_hal_gpio_init function. The GPIO driver should be one of the first to be
initialized.

The following example code is similar to the code found in hal_gpio_app.c.

APPLICATION_START()
{
 wiced_set_debug_uart(WICED_ROUTE_DEBUG_TO_PUART);
 wiced_hal_puart_select_uart_pads(WICED_PUART_RXD, WICED_PUART_TXD, 0, 0);

 WICED_BT_TRACE("GPIO application start\n\r");

 wiced_bt_stack_init(sample_gpio_app_management_cback,NULL,NULL);
}

wiced_result_t sample_gpio_app_management_cback(wiced_bt_management_evt_t event,
 wiced_bt_management_evt_data_t *p_event_data)
{
 wiced_result_t result = WICED_SUCCESS;

 Interface Programming Information and Examples

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 37

 WICED_BT_TRACE("sample_gpio_app_management_cback %d\n\r", event);

 switch(event)
 {
 /* Bluetooth stack enabled */
 case BTM_ENABLED_EVT:
 /* Initializes the GPIO driver */
 wiced_hal_mia_init();
 wiced_hal_gpio_init();
 wiced_hal_mia_enable_mia_interrupt(TRUE);
 wiced_hal_mia_enable_lhl_interrupt(TRUE);

 /* Sample function configures LED pin as output
 * sends a square wave on it
 * if testing pin 31 then disable puart*/
 gpio_test_led();

 /* Sample function configures GPIO as input. Enable interrupt.
 * Register a call back function to handle on interrupt*/
 gpio_set_input_interrupt();

 break;
 default:
 break;
 }
 return result;
}

void gpio_interrrupt_handler(void *data, uint8_t port_pin)
{
 static uint32_t prev_blink_interval = APP_TIMEOUT_IN_SECONDS_A;
 uint32_t curr_blink_interval = 0;

 /* Get the status of interrupt on P# */
 if (wiced_hal_gpio_get_pin_interrupt_status(WICED_GPIO_BUTTON))
 {
 /* Clear the gpio interrupt */
 wiced_hal_gpio_clear_pin_interrupt_status(WICED_GPIO_BUTTON);
 }

 /* stop the led blink timer */
 wiced_stop_timer(&seconds_timer);

 /* toggle the blink time interval */
 curr_blink_interval = (APP_TIMEOUT_IN_SECONDS_A == prev_blink_interval)
 ?APP_TIMEOUT_IN_SECONDS_B:APP_TIMEOUT_IN_SECONDS_A;

 wiced_start_timer(&seconds_timer, curr_blink_interval);

 WICED_BT_TRACE("gpio_interrupt_handler : %d\n\r", curr_blink_interval);

 /* update the previous blink interval */
 prev_blink_interval = curr_blink_interval;
}

void gpio_set_input_interrupt()
{
 uint16_t pin_config;

 /* Configure GPIO PIN# as input, pull up and interrupt on rising edge and output
 * value as high (pin should be configured before registering interrupt handler)*/
 wiced_hal_gpio_configure_pin(WICED_GPIO_BUTTON, WICED_GPIO_BUTTON_SETTINGS(
 GPIO_EN_INT_RISING_EDGE), WICED_GPIO_BUTTON_DEFAULT_STATE);

 Interface Programming Information and Examples

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 38

 wiced_hal_gpio_register_pin_for_interrupt(WICED_GPIO_BUTTON,
 gpio_interrrupt_handler, NULL);

 /* Get the pin configuration set above */
 pin_config = wiced_hal_gpio_get_pin_config(WICED_GPIO_BUTTON);
 WICED_BT_TRACE("Pin config of P%d is %d\n\r", WICED_GPIO_BUTTON, pin_config);
}

/* The function invoked on timeout of app seconds timer. */
void seconds_app_timer_cb(uint32_t arg)
{
 wiced_timer_count++;
 WICED_BT_TRACE("seconds periodic timer count: %d s\n", wiced_timer_count);

 if(wiced_timer_count & 1)
 {
 wiced_hal_gpio_set_pin_output(LED_GPIO_1, GPIO_PIN_OUTPUT_LOW);
 }
 else
 {
 wiced_hal_gpio_set_pin_output(LED_GPIO_1, GPIO_PIN_OUTPUT_HIGH);
 }
}

void gpio_test_led()
{
 WICED_BT_TRACE("gpio_test_led\n\r");

 /* Configure LED PIN as input and initial outvalue as high */
 wiced_hal_gpio_configure_pin(LED_GPIO_1, GPIO_OUTPUT_ENABLE, GPIO_PIN_OUTPUT_HIGH);

 if (wiced_init_timer(&seconds_timer, &seconds_app_timer_cb, 0,
 WICED_SECONDS_PERIODIC_TIMER)== WICED_SUCCESS)
 {
 if (wiced_start_timer(&seconds_timer, APP_TIMEOUT_IN_SECONDS_A)
 != WICED_SUCCESS)
 {
 WICED_BT_TRACE("Seconds Timer Error\n\r");
 }
 }
}

10.2 SPI1 Master Programming Example
The following code shows how to initialize SPI1 as a master, write a byte to a SPI slave, and read a byte from a SPI slave.

#include "wiced_hal_gpio.h"
#include "wiced_hal_pspi.h"

#define SPIFFY_SPEED 1000000 /* Use 1M speed */
#define SPIFFY_CS_ASSERT 1
#define SPIFFY_CS_DEASSSERT 0
uint8_t test_spiffy1_master_send_receive_byte(uint8_t byteToSend);

void test_pspi_driver(void)
{
 /* Reset spi hardware block and set to default config*/
 wiced_hal_pspi_reset();

 /* Initialize spiffy1 in master role */
 /* available pin combinations are in spiffydriver.h */

 Interface Programming Information and Examples

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 39

 wiced_hal_pspi_init(MASTER, GPIO_PULL_UP, MASTER1_P24_CLK_P27_MOSI_P25_MISO,
 SPIFFY_SPEED, SPI_MSB_FIRST, SPI_SS_ACTIVE_LOW, SPI_MODE_3, WICED_GPIO_33);

 /* Send a byte and receive a byte from slave*/
 test_spiffy1_master_send_receive_byte(1);
}

/* Sends one byte and receives one byte from the SPI slave.
 * byteToSend - The byte to send to the slave.
 * Returns the byte received from the slave.
 */
uint8_t test_spiffy1_master_send_receive_byte(uint8_t byteToSend)
{
 uint8_t byteReceived;

 /* Assert chipselect by driving O/P on the GPIO */
 wiced_hal_gpio_set_pin_output(WICED_GPIO_15, SPIFFY_CS_ASSERT);

 /* Tx one byte of data */
 wiced_hal_pspi_tx_data(1, &byteToSend);

 /* Rx one byte of data */
 wiced_hal_pspi_rx_data(1, &byteReceived);

 /* Deassert chipselect */
 wiced_hal_gpio_set_pin_output(WICED_GPIO_15, SPIFFY_CS_DEASSSERT);

}

10.3 SPI1 Slave Programming Example
The following code shows how to initialize SPI1 as a slave, write a byte to a SPI master, and read a byte from a SPI master.

#include "wiced_hal_pspi.h"

#define SLAVE1_P36_CS_P24_CLK_P27_MOSI_P25_MISO 0x24181b19 /* Refer Hardware
peripherals doc */
#define SPIFFY_SPEED 1000000 /* Use 1M speed */

void test_pspi_driver(void)
{
 /* Initialize spiffy1 in slave role, available pin combinations are in spiffydriver.h
 DO NOT CONFIGURE csPin in SLAVE mode - the HW takes care of this. There is no need
 to configure the speed too - the master selects the speed.
 */

 wiced_hal_pspi_init(SLAVE, GPIO_PULL_DOWN,
 SLAVE1_P36_CS_P24_CLK_P27_MOSI_P25_MISO,
 SPIFFY_SPEED, SPI_MSB_FIRST,
 SPI_SS_ACTIVE_LOW, SPI_MODE_3,
 WICED_GPIO_03);

 /* Rx a byte from master, increment and Tx it back to master*/
 test_spiffy1_slave_send_receive_byte();
}

/* Receives a byte from the SPI master, increments the byte and sends it back
 * byteToSend - The byte to send to the slave.
 * Returns the byte received from the slave.

 Interface Programming Information and Examples

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 40

 */
uint8_t test_spiffy1_slave_send_receive_byte(void)
{
 uint8_t byteReceived;

 /* Rx one byte of data */
 wiced_hal_pspi_rx_data(1, &byteReceived);

 /* Send back byteReceived + 1 */
 byteReceived++;

 /* Tx one byte of data */
 wiced_hal_pspi_tx_data(1, &byteReceived);

}

10.4 BSC Programming Example
The following example shows how to initialize the BSC as a master, and how to write, read, and use the combination write-
then-read transactions.

#include "wiced_hal_i2c.h"

#define I2C_SLAVE_ADDRESS (0x1A) /* Use driver slave address 0x1A =
 * (7'b0001101 << 1) | 1'bR|W */
#define I2C_SLAVE_OPERATION_READ 0 /* Read operation to the lower level
 * driver is 0 */
#define I2C_SLAVE_OPERATION_WRITE 1 /* Write operation to the lower
 * level driver is 1 */

/* Sample code to test i2c driver */
void test_i2c_driver(void)
{
 uint8_t data_array[] = "123456";

 /* Initializes the I2C driver and its private values. This initialization
 * sets the bus speed to 100KHz by default (I2CM_SPEED_100KHZ)*/
 wiced_hal_i2c_init();

 /* current I2C bus speed */
 wiced_hal_i2c_get_speed();

 /* Sets the I2C bus speed
 (I2CM_SPEED_100KHZ/ I2CM_SPEED_400KHZ/ I2CM_SPEED_800KHZ/ I2CM_SPEED_1000KHZ)/
 wiced_hal_i2c_set_speed(I2CM_SPEED_400KHZ);

 /* Writes the given data to the I2C HW addressing a particular slave address */
 wiced_hal_i2c_write(data_array, sizeof(data_array), I2C_SLAVE_ADDRESS);

 /* Reads data into given buffer from the I2C HW addressing
 * a particular slave address */
 wiced_hal_i2c_read(data_array, sizeof(data_array), I2C_SLAVE_ADDRESS);
 WICED_BT_TRACE("Read bytes %s\n\r", data_array);
}

 Interface Programming Information and Examples

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 41

10.5 PUART Programming Example
The following example shows how to initialize the peripheral UART. The complete working project for this example can be
found in WICED Studio under Project Explorer 20706-A2_Bluetooth\apps\snip\hal_puart. Pertinent sections of source file
hal_puart_app.c are shown here:

#include "wiced_hal_puart.h"

void puar_rx_interrupt_callback(void* unused)
{
 // There can be at most 16 bytes in the HW FIFO.
 uint8_t readbyte;

 wiced_hal_puart_read(&readbyte);

 /* send one byte via the TX line. */
 wiced_hal_puart_write(readbyte+1);

 if(readbyte == 'S')
 {
 /* send a string of characters via the TX line */
 wiced_hal_puart_print("\nYou typed 'S'.\n");
 }
 wiced_hal_puart_reset_puart_interrupt();

}

/* Sample code to test puart driver. Initializes puart, selects puart pads,
 * turn off flow control, and enables Tx and Rx.
 * Echoes the input byte with increment by 1.
 */
void test_puart_driver(void)
{
 uint8_t read_5_bytes[5];

 wiced_hal_puart_init();

 // Possible uart tx and rx combination.
 // Pin for Rx: p2, Pin for Tx: p0
 // Note that p2 and p0 might not be available for use on your
 // specific hardware platform.
 // Please see the User Documentation to reference the valid pins.
 wiced_hal_puart_select_uart_pads(WICED_PUART_RXD, WICED_PUART_TXD, 0, 0);
 /* Turn off flow control */
 wiced_hal_puart_flow_off(); // call wiced_hal_puart_flow_on(); to turn on flow
 // control

 // BEGIN - puart interrupt
 wiced_hal_puart_register_interrupt(puar_rx_interrupt_callback);

 /* Turn on Tx */
 wiced_hal_puart_enable_tx(); // call wiced_hal_puart_disable_tx to disable
 // transmit capability.
 wiced_hal_puart_print("Hello World!\r\nType something! Keystrokes are echoed to
 the terminal ...\r\n");

 /* Enable to change puart baud rate. eg: 9600, 19200, 38200 */
 //wiced_hal_puart_set_baudrate(115200);

}

 Interface Programming Information and Examples

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 42

10.6 NVRAM Programming Example
The following code sample provides an example of writing a Bluetooth device address to NVRAM and reading it back.

#define APP_VS_ID WICED_NVRAM_VSID_START
BD_ADDR bd_addr_write = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06};
BD_ADDR bd_addr_read;

void test_nvram_read_write_app()
{
 uint8_t written_bytes, read_bytes;
 wiced_result_t status;

 /* Write BD ADDR to NVRAM */
 written_bytes = wiced_hal_write_nvram(APP_VS_ID, BD_ADDR_LEN, bd_addr_write,
 &status);
 WICED_BT_TRACE("status of nvram write %d, number of bytes written %d\n", status,
 written_bytes);

 /* Read BD ADDR from NVRAM */
 read_bytes = wiced_hal_read_nvram(APP_VS_ID, BD_ADDR_LEN, bd_addr_read,
 &status);
 WICED_BT_TRACE("status of nvram read %d, number of bytes read %d\n", status,
 read_bytes);
 wiced_bt_trace_array("BD_ADDR read back : \n", bd_addr_read, BD_ADDR_LEN);
}

PRELIMIN ARY

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 43

Appendix A. Power-Save Options
The WICED Studio API provides two power-save options for CYW20706, each initiated by a function call. The power-save
options are:

 Low Power Sleep Mode – reduced power consumption, device configured to sleep when idle, application is suspended.

 Deep Sleep Power Save Mode - minimal power consumption, device largely inactive, application exits.

 Applications can make use of either or both power save modes. Typically, the Deep Sleep Power Save Mode is used
when the battery level falls below a critical threshold. See below for details on each power save mode.

Note: Refer to wiced_power_save.h in WICED Studio for all API functions and constants related to the available power-
save options.

A.1 Low Power Sleep Mode
Use wiced_sleep_config to configure CYW20706 to automatically enter and exit Low Power Sleep Mode operation. In this
mode, the device achieves power savings by suspending the application and allowing the device to sleep between BLE
advertising intervals.

Configuring Low Power Sleep Mode does not immediately put the device in low power mode, it simply enables the device to
transition to Low Power mode whenever idle. The application is suspended and resumed transparently by the device when it
enters and exits sleep.

The device wakeup can be triggered by any activity on an active peripheral, GPIO, the BT radio, or an interrupt from a timer
started by the application.

To enable Low Power Sleep Mode operation, call:

 wiced_sleep_config(WICED_TRUE, NULL, NULL);

To disable Low Power Sleep Mode operation, call:

 wiced_sleep_config(WICED_FALSE, NULL, NULL);

The second and third arguments are not needed for embedded SoC applications, they are only used in external MCU
scenarios where BT_DEV_WAKE (F8) can be used by an external MCU to wake the device, and BT_HOST_WAKE can be
used by the device as a wake signal to an external MCU.

A.2 Deep Sleep Power Save Mode
The APIs used to utilize Deep Sleep Power Save Mode are described below, followed by code snippets showing their usage.

Use wiced_power_save_start to instruct CYW20706 to enter the Deep Sleep Power Save Mode when idle.

The wake_source parameter in wiced_power_save_start indicates the wake-up source. The available choices are:

• WICED_WAKE_SOURCE_GPIO - wake if any of the multiplexed GPIOs, also referred to as the LHL GPIOs (or GPIO_Pxx),
transition to an active state (positive edge trigger).

• WICED_WAKE_SOURCE_TIMEOUT - wake based on a timeout

• WICED_WAKE_SOURCE_ALL - wake either based on GPIOs or a timeout

The transition to Deep Sleep mode causes the currently running application to exit, so care must be taken to save any state
information that will be needed by the application upon waking up. When the device wakes from this power-save mode, the
application will be restarted. Therefore, an application utilizing this mode should retrieve any such saved state information
from a previous incarnation on every startup.

Use the following two API functions to save and restore application state information:

• wiced_power_save_store_state (use before transitioning into power-save mode)

• wiced_power_save_retrieve_state (use after waking from power-save mode)

Configuring Deep Sleep Power Save Mode does not immediately put the device to sleep, rather, it instructs the device that it
should transition to deep sleep if possible. The device will try to transition to deep sleep as soon as it determines the system
is idle, or until the operation has been aborted by an internal component.

 Power-Save Options

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 44

Applications can register callback functions to be notified of deep sleep transition attempts, possible transition aborts, and to
allow or disallow the actual transition to deep sleep:

 wiced_power_save_register_approve_cback – register callback to approve or disapprove transition

The callback registered with this function is called when the device has decided to transition to deep sleep, to allow an
application to approve or disapprove of CYW20706 transitioning to the power-save mode. The application may allow the
transition by returning a non-zero value from the callback, or return zero to disallow. If the transition is disallowed, the original
request to transition to deep sleep remains active, and the device will continue to request the transition with further invocations
to this callback. Applications may choose to disallow to temporarily delay the sleep transition until the application is ready.

 wiced_power_save_register_enter_cback – register callback to be notified of imminent transition

The callback registered with this function is called just before CYW20706 transitions to the deep sleep power save mode to
allow the application to save state information with wiced_power_save_store_state.

 wiced_power_save_register_abort_cback – register callback to be notified if a pending transition is aborted.

The callback registered with this function is invoked if a transition to the power-save mode is aborted by the device. In this
state, the original request to transition to deep sleep is no longer active. An application can react to a power-save abort by
once again invoking wiced_power_save_start.

Use wiced_power_save_stop to instruct CYW20706 to cancel a previously requested deep sleep transition. This can be
called by the application any time after the call to wiced_power_save_start and before the callback registered for transition
entry notification is called (from wiced_power_save_register_enter_cback). Once that notification callback has been
invoked, it is too late to try to stop the transition.

The following code examples show how to use the wiced_power_save_* API functions:

uint16_t persistent_state_info = 0; /* application specific info to survive sleep */

/* normal application initializations (GPIOs, etc) occur from the callback function
 * registered with wiced_bt_stack_init() handling BTM_ENABLED_EVT notification.
 * call this function from that context after those initialization */
void deep_sleep_init(void)
{
 /* retrieve stored state from previous execution */
 stored_state_info = wiced_power_save_retrieve_state());

 /* register callbacks */
 wiced_power_save_register_approve_cback(power_save_approve);
 wiced_power_save_register_enter_cback(power_save_enter);
 wiced_power_save_register_abort_cback(power_save_abort);
}

/* function to be called when app wants to init deep sleep,
 * e.g. battery monitor or idle time handler */
void sample_interrupt_handler(void)
{
 /* request deep sleep, to be woken either on GPIO interrupt or a 10000ms timeout */
 wiced_power_save_start(WICED_WAKE_SOURCE_ALL, 10000);
}

uint32_t power_save_approve(void)
{
 if(isAppWillingToSleepNow)
 {
 WICED_BT_TRACE("Approving deep sleep request...\n");
 return ~0;
 }
 else /* not willing to approve */
 {
 /* app will return 0 to disapprove, which will allow device to retry */
 /* unless we want to stop it now */
 if (doesAppWantToCancelSleep)
 {

 Power-Save Options

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 45

 WICED_BT_TRACE("Cancelling deep sleep mode now...\n");
 wiced_power_save_stop();
 }
 else
 {
 WICED_BT_TRACE("Disapproving deep sleep request for now to delay it...\n");
 }
 return 0;
 }
}

void power_save_enter(void)
{
 /* too late to try to stop it now, can only store state */
 wiced_power_save_store_state(persistent_state_info);
 WICED_BT_TRACE("Entering deep sleep now...\n");
}

void power_save_abort(void)
{
 /* device has aborted the deep sleep, it will not retry further unless requested */
 WICED_BT_TRACE("Deep Sleep request aborted.\n");

 if (doesAppStillWantToSleep)
 {
 WICED_BT_TRACE("Re-init deep sleep request...\n");
 wiced_power_save_start(WICED_WAKE_SOURCE_ALL, 10000);
 }
}

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 46

References
Document (or Item) Name Number Source

[1] CYW20706 Embedded Bluetooth 4.2 SoC with MCU,
Bluetooth Transceiver, and Baseband Processor 002-14790 community.cypress.com

[2] WICED CYW920706WCDEVAL Kit Guide 002-18191 community.cypress.com

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 47

Document Revision History
Document Title: CYW920706WCDEVAL Hardware User Guide

Document Number: 002-16535

Revision ECN Issue Date Description of Change

** 5829476 07/26/2017 Initial release

CYW920706WCDEVAL Hardware User Guide Doc. No.: 002-16535 Rev. ** 48

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products
ARM®Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community
Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support
cypress.com/support

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bluetooth Development Tools - 802.15.1 category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

DA14580PRODTLKT 1628 BCM9WICED_SENSE SKY66111-21EK1 455-00001 455-00002 SECO-RSL10-TAG-GEVB 3026 MIKROE-

2471 BLE-IOT-GEVB DVK-BT830-SA-01 EVAL-BT EVAL_PAN1026 EVAL_PAN1720 EVAL_PAN1740 2267 DVK-BL600-SC 2479

2487 2633 ENW89820AY2F ENW89820AY1F STEVAL-IDB005V1D STEVAL-IDB001V1 MIKROE-2545 SIPKITSLF001 2995

EBSHJNZWZ EKSHJNZWZ CYW920706WCDEVAL 2829 DFR0267 DFR0296 TEL0073 BM-70-CDB AC320032-3 ENW-

89847AWKF SLTB001A WSM-BL241-ADA-008DK SLWRB4303A STEVAL-BTDP1 FXX-3041-ESS UGMZ2AA_EVK FWM7BLZ20-

DAU2-EB2 BTM-01 MTH52DVK01 ACD52832 ISP1507-AX-EB TEL0095 ISP1507-AX-TB

https://www.xonelec.com/category/embedded-solutions/engineering-tools/communication-development-tools/rf-wireless-development-tools/bluetooth-development-tools-802-15-1
https://www.xonelec.com/manufacturer/infineon
https://www.xonelec.com/mpn/dialogsemiconductor/da14580prodtlkt
https://www.xonelec.com/mpn/c-k/1628
https://www.xonelec.com/mpn/infineon/bcm9wicedsense
https://www.xonelec.com/mpn/skyworks/sky6611121ek1
https://www.xonelec.com/mpn/laird/45500001
https://www.xonelec.com/mpn/laird/45500002
https://www.xonelec.com/mpn/onsemiconductor/secorsl10taggevb
https://www.xonelec.com/mpn/adafruit/3026
https://www.xonelec.com/mpn/mikroelektronika/mikroe2471
https://www.xonelec.com/mpn/mikroelektronika/mikroe2471
https://www.xonelec.com/mpn/onsemiconductor/bleiotgevb
https://www.xonelec.com/mpn/lairdconnectivity/dvkbt830sa01
https://www.xonelec.com/mpn/flexipanel/evalbt
https://www.xonelec.com/mpn/panasonic/evalpan1026
https://www.xonelec.com/mpn/panasonic/evalpan1720_1
https://www.xonelec.com/mpn/panasonic/evalpan1740
https://www.xonelec.com/mpn/adafruit/2267
https://www.xonelec.com/mpn/lairdconnectivity/dvkbl600sc
https://www.xonelec.com/mpn/adafruit/2479
https://www.xonelec.com/mpn/adafruit/2487
https://www.xonelec.com/mpn/adafruit/2633
https://www.xonelec.com/mpn/panasonic/enw89820ay2f
https://www.xonelec.com/mpn/panasonic/enw89820ay1f
https://www.xonelec.com/mpn/stmicroelectronics/stevalidb005v1d
https://www.xonelec.com/mpn/stmicroelectronics/stevalidb001v1
https://www.xonelec.com/mpn/mikroelektronika/mikroe2545
https://www.xonelec.com/mpn/siliconlabs/sipkitslf001
https://www.xonelec.com/mpn/adafruit/2995
https://www.xonelec.com/mpn/taiyoyuden/ebshjnzwz
https://www.xonelec.com/mpn/taiyoyuden/ekshjnzwz
https://www.xonelec.com/mpn/infineon/cyw920706wcdeval
https://www.xonelec.com/mpn/adafruit/2829
https://www.xonelec.com/mpn/dfrobot/dfr0267
https://www.xonelec.com/mpn/dfrobot/dfr0296
https://www.xonelec.com/mpn/dfrobot/tel0073
https://www.xonelec.com/mpn/microchip/bm70cdb
https://www.xonelec.com/mpn/microchip/ac3200323
https://www.xonelec.com/mpn/panasonic/enw89847awkf
https://www.xonelec.com/mpn/panasonic/enw89847awkf
https://www.xonelec.com/mpn/siliconlabs/sltb001a
https://www.xonelec.com/mpn/murata/wsmbl241ada008dk
https://www.xonelec.com/mpn/siliconlabs/slwrb4303a
https://www.xonelec.com/mpn/stmicroelectronics/stevalbtdp1
https://www.xonelec.com/mpn/terasictechnologies/fxx3041ess
https://www.xonelec.com/mpn/alps/ugmz2aaevk
https://www.xonelec.com/mpn/fujitsu/fwm7blz20dau2eb2
https://www.xonelec.com/mpn/fujitsu/fwm7blz20dau2eb2
https://www.xonelec.com/mpn/oseppelectronics/btm01
https://www.xonelec.com/mpn/ilumi/mth52dvk01
https://www.xonelec.com/mpn/aconno/acd52832
https://www.xonelec.com/mpn/insightsip/isp1507axeb
https://www.xonelec.com/mpn/dfrobot/tel0095
https://www.xonelec.com/mpn/insightsip/isp1507axtb

