

Understanding ESD protection device characteristics Basic introduction

Basic application examples

Fig. 1 Bidirectional ESD protection

Fig. 2 Unidirectional ESD protection

Bidirectional ESD protection devices are symmetric (fig. 1). They can be used on the lines with bipolar signals $\left(-\mathrm{V}_{\text {WM }} \leq \mathrm{V}_{\text {signal }} \leq \mathrm{V}_{\text {wM }}\right)$ as well as with unipolar signals ($\left.0 \leq \mathrm{V}_{\text {signal }} \leq \mathrm{V}_{\text {WM }}\right)$.

Unidirectional ESD protection devices (fig. 2) are asymmetric, and can be used on lines with unipolar signals only ($0 \leq \mathrm{V}_{\text {signal }} \leq \mathrm{V}_{\text {wM }}$). Physically they are used in reverse direction, analogous to Zener diodes. The convention across the industry is to specify voltage and current in that direction as positive, like the voltages in the application.

Types of current-voltage (I-V) characteristic curves (not to scale)

Fig. 3 Diode-like

Fig. 4 Mild snapback

Fig. 5 Strong snapback (SCR ${ }^{11}$, thyristor)

Current-voltage (I-V) characteristic summary

I-V behaviour type	Features and benefits	Best suited for
Diode-like	> Simple behavior, easy to use > Good protection performance > Low voltage overshoot, fast turn-on	> Fast turn-on applications > Multi-purpose and low speed applications: buttons, switches, audio, GPIO, touch panels...
Mild snapback	> Improved protection performance $\left(\mathrm{V}_{\mathrm{cl}}\right)$ > Enables low capacitance (C_{L}) > Excellent balance of $V_{w m}$ and $V_{c l}$	Same applications as diode-like, plus > High speed I/O and RF applications
Strong snapback (SCR, thyristor)	```> "Pound for pound" best protection performance (V) > Enables low capacitance (CL```	> RF applications > Applications with most demanding V_{cl} requirement: - High speed applications, LVDS - Super fine geometry SoC I/O with nm -scale technology

Typical first order selection parameters for the TVS

C_{L} - line capacitance - especially important for high speed/RF applications, less so for general purpose and low speed applications.
V_{wm} - maximum working voltage - must be chosen equal or higher than the maximum voltage on the protected line during specified operation (see fig. 6). Typical protection devices have V_{WM} aligned with standard system and I / O voltages $\left(\mathrm{V}_{10}, \mathrm{~V}_{\text {bus }}\right)$, i.e. $2.1 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$.
V_{cl} - clamping voltage - the most important parameter for protection performance. At the given stress level $\left(I_{\text {TLP }}, I_{\text {PP }}\right)^{1)} V_{\text {cl }}$ must be lower than the failure voltage of the IC (if known), otherwise as low as possible.

Fig. $6 \mathrm{~V}_{\mathrm{wm}}$ equal or higher than $\mathrm{V}_{\text {signal }}$

I-V curve parameters for advanced understanding

$\mathrm{V}_{\mathrm{h}}, \mathrm{I}_{\mathrm{h}}$ - holding voltage, holding current

> For strong snapback devices $\mathrm{V}_{\mathrm{h}}<\mathrm{V}_{\mathrm{wm}}$. V_{h} is a local minimum of the voltage, and I_{h} is the corresponding current. V_{h} and I_{h} must be balanced with the line driver DC voltage/ current capability in order to prevent a device latch-up ${ }^{2)}$.
> For mild snapwback devices $\mathrm{V}_{\mathrm{h}}>\mathrm{V}_{\mathrm{w}} \cdot \mathrm{I}_{\mathrm{h}}$ is not given in the datasheet, V_{h} is measured at a fixed testing current \mathbf{I}_{t}.
V_{br} - breakdown voltage - measured at specified testing current I_{t}
V_{tr} - trigger voltage - maximum voltage before the device turns on (triggers) and snaps back to V_{h}. For snapback devices V_{tr} is slightly higher than $\mathrm{V}_{\mathrm{br}} . \mathrm{V}_{\mathrm{tr}}$ is verified by design.
I_{L} - leakage current - current that flows through the device at $V_{\text {wm }}$
$\mathrm{R}_{\mathrm{dyn}}$ - dynamic resistance - characterizes the steepness of the device I-V characteristic while conducting an ESD event ${ }^{3}$. Lower $\mathrm{R}_{\mathrm{dyn}}$ is usually related to better protection performance, can be used to estimate $\mathbf{V}_{\text {cl }}$ at different stress levels ($\mathbf{I}_{\text {TLP }}$) than datasheet provides.

Other device parameters/characteristics

Linearity - in applications with RF transmitters, e.g. mobile phones, EMI/EMC can be a concern due to harmonic generation from ESD protection devices on signal lines. ESD protection devices optimized for linearity generate less harmonic distortion and intermodulation.

IL - insertion loss - correlates highly with C_{L}, important only for high-speed/RF applications
$V_{\text {ESD }}$ - maximum electrostatic discharge voltage - based on IEC61000-4-2
$I_{\text {PP }}$ - maximum pulse current - also referred to as surge robustness,
based on IEC61000-4-5

[^0]Low capacitance ESD protection devices

Product name	C typical [pF]	$v_{\text {wM }}$ [V]	V_{cl} typical @ $\mathrm{I}_{\text {TLP }}=16 \mathrm{~A}$ [V]	I_{L} max [nA]	$\mathrm{R}_{\text {dyn }}$ typical [Ω]	$\mathrm{V}_{\text {ESD }}{ }^{11}$ contact [kV]	$\mathrm{I}_{\mathrm{pp}}{ }^{2)}$ $8 / 20 \mu \mathrm{~s}$ [A]	Availability
ESD106-B1-W0201	0.13	5.5	25.0	20	1.10	14	1.5	Mass production
ESD107-U1-W0201	0.50	3.3	12.5/4.0 ${ }^{3}$	50	0.40/0.203)	20	3.0	In planning
ESD108-B1-CSP0201	0.28	5.5	20.0	20	0.78	25	2.5	Mass production
ESD119-B1-W01005	0.20	5.5	20.0	20	0.80	25	2.5	Mass production
ESD120-B1-W0201	0.25	2.1	19.0	200	0.94	15	-	Development
ESD121-B1-W0201	0.25	7.0	24.0	200	0.90	15	-	In planning
ESD128-B1-W0201	0.30	18.0	32.0	30	0.85	15	2.0	Mass production
ESD129-B1-W01005	0.30	18.0	32.0	30	0.82	15	2.0	Mass production
ESD130-B1-W0201	0.30	5.5	20.0	20	0.80	18	2.5	Mass production
ESD131-B1-W0201	0.23	5.5	13.0	100	0.66	20	3.5	Mass production
ESD132-B1-W0201	0.45	5.5	7.0	100	0.20	30	9.0	Mass production
ESD133-B1-W01005	0.20	5.5	13.0	50	0.56	20	3.0	Mass production
ESD134-B1-W0201	0.30	2.1	7.7	20	0.28	28	7.5	Mass production
ESD144-B1-W0201	0.20	18.0	12.5	50	0.58	18	3.5	Mass production
ESD145-B1-W01005	0.20	18.0	12.5	50	0.58	18	3.5	Mass production

Nomenclature - Sales number

ESD1xx low capacitance, $\mathrm{C}_{<}<1 \mathrm{pF}$
ESD2xx multi-purpose, $C_{L}>1 \mathrm{pF}$
B Bidirectional \qquad
Unidirectional
-1

W01005, CSP01005 wafer-level, $0.4 \mathrm{~mm} \times 0.2 \mathrm{~mm}$ W0201, CSP0201 wafer-level, $0.6 \mathrm{~mm} \times 0.3 \mathrm{~mm}$ 02N

Multi-purpose ESD protection devices

Product name	C_{L} typical [pF]	$v_{w M}$ [V]	V_{ct} typical @ $1_{\text {TLP }}=16 \mathrm{~A}$ [V]	$\begin{aligned} & I_{\text {max }} \\ & {[\text { nA] }} \end{aligned}$	$\mathrm{R}_{\text {dyn }}$ typical $[\Omega]$	$\mathrm{V}_{\text {ESD }}{ }^{11}$ contact [kV]	$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{pp}}{ }^{2)} \\ 8 / 20 \mu \mathrm{~s} \end{array}$ $[\mathrm{A}]$	Availability
ESD200-B1-CSP0201	6.5	5.5	13.0	100	0.20	17	3.0	Mass production
ESD202-B1-CSP01005	6.5	5.5	13.0	100	0.20	15	3.0	Mass production
ESD230-B1-W0201	7.0	5.5	13.0	100	0.22	16	3.0	Mass production
ESD231-B1-W0201	3.5	5.5	12.0	20	0.30	30	12.0	Mass production
ESD233-B1-W0201	33.0	5.5	13.0	100	0.20	20	5.0	Mass production
ESD234-B1-W0201	56.0	5.5	12.5	100	0.15	19	7.0	Mass production
ESD237-B1-W0201	7.0	8.0	13.0	100	0.21	16	3.0	Mass production
ESD239-B1-W0201	3.2	22.0	27.0	100	0.27	16	3.0	Mass production
ESD240-B1-W01005	3.0	22.0	27.0	100	0.31	16	3.0	Development
ESD241-B1-W0201	6.5	3.3	6.0	30	0.09	18	4.5	Mass production
ESD242-B1-W01005	6.0	3.3	6.0	30	0.09	18	4.5	Mass production
ESD245-B1-W0201	5.8	5.5	7.5	30	0.10	15	5.5	Mass production
ESD246-B1-W01005	5.5	5.5	7.5	30	0.10	15	5.5	Mass production
ESD249-B1-W0201	4.2	18.0	23.5	100	0.27	16	3.0	Mass production
ESD251-B1-W0201	33.0	3.3	6.0	100	0.09	25	8.0	Development
ESD252-B1-W01005	33.0	3.3	6.0	100	0.09	25	8.0	Development
ESD253-B1-W0201	2.8	24.0	31.0	100	0.30	15	3.0	Mass production
ESD254-B1-W01005	2.5	24.0	32.0	100	0.35	15	3.0	Development
ESD259-B1-W0201	4.2	16.0	24.0	500	0.29	15	2.5	Mass production
ESD307-U1-02N	270.0	10.0	17.0/2.03)	100	0.05/0.053)	30	34.0	Mass production
ESD311-U1-02N	210.0	15.0	22.0/2.03)	100	0.07/0.053	30	28.0	Mass production

1) $V_{\text {ESD }}$ based on IEC61000-4-2, contact discharge
2) I Ipp based on IEC61000-4-5, 8/20 μ s current waveform
3) Positive/negative direction

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2019 Infineon Technologies AG
All Rights Reserved.

Order Number: B132-I0810-V1-7600-EU-EC-P Date: 04/2019

lease note!

THIS DOCUMENT IS FOR INFORMATION PURPOSES ONLY AND ANY INFORMATION GIVEN HEREIN SHALL IN NO EVENT BE REGARDED AS A WARRANTY, GUARANTEE OR DESCRIPTION OF ANY FUNCTIONALITY, CONDITIONS AND/OR QUALITY OF OUR PRODUCTS OR ANY SUITABILITY FOR A PARTICULAR PURPOSE. WITH REGARD TO THE TECHNICAL SPECIFICATIONS OF OUR PRODUCTS, WE KINDLY ASK YOU TO REFER TO THE RELEVANT PRODUCT DATA SHEETS PROVIDED BY US. OUR CUS TOMERS AND THEIR TECHNICAL DEPARTMENTS ARE REQUIRED TO EVALUATE THE SUITABILITY OF OUR PRODUCTS FOR THE INTENDED APPLICATION.

WE RESERVE THE RIGHT TO CHANGE THIS DOCUMENT AND/OR THE INFORMATION GIVEN HEREIN AT ANY TIME.

Additional information

or further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices, please contact your neares Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements, our products may contain dangerous substances, For information on the types in question, please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by athorized representatives of Infineon Technologies, our products may not be used in any life-endangering applications, including but not limited to medical, nuclear military, life-critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0F4U5P5-7 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA $82350120560 \underline{82356240030}$ VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A 5KP15A

[^0]: V_{cl} depends on the pulse width and shape: TLP, IEC61000-4-2, IEC61000-4-5
 2) AN525: Latch-up prediction for SCR TVS device
 3) Measured using Transmission Line Pulse (TLP) system

