

EVAL-M3-IM564 User Manual

iMOTION™ Modular Application Design Kit

About this document

Scope and purpose

This user manual provides an overview of the evaluation board EVAL-M3-IM564 including its main features, key data, pin assignments and mechanical dimensions.

EVAL-M3-IM564 is an evaluation board as part of the iMOTION[™] modular application design kit. This power board includes a PFC integrated 3-phase CIPOS[™] Mini intelligent power module (IPM) for motor drive applications. In combination with the control board equipped with the M3 30-pin interface connector such as EVAL-M3-102T, it features and demonstrates Infineon's CIPOS[™] Mini IPM technology and advanced motion control engine (MCE 2.0) technology for permanent magnet motors drive over the full speed range.

The inverter section has 600 V of voltage and 20 A of current rating, and the PFC section has 600 V of voltage and 20 A of current rating. It is optimized to major home appliances like air conditioners and low power motor dirve applications with high-frequency switching operation of power factor correction.

This evaluation board EVAL-M3-IM564 was developed to support customers during their first steps designing applications with CIPOS[™] Mini PFC integrated IPM IM564-X6D/IM564-X6DS and running any permanent magnet motor via sensorless sinusoidal control.

Intended audience

This user manual is intended for all technical specialists who know motor control and high-power electronics converters. The board is intended to be used under laboratory conditions.

Attention:The Evaluation Boards and Reference Boards as well as the information in this document are
solely intended to support designers of applications in evaluating the use of products from
Infineon Technologies for their intended applications.

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and

Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer accepts that the Evaluation Boards and Reference Boards are not intended to be used in life-endangering applications such as medical, nuclear, military, life-critical or other applications, where failure of the Evaluation Boards and Reference Boards, or any results from the use thereof, can reasonably be expected to result in personal injury.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

Safety precautions

Please note the following warnings regarding the hazards associated with development systems.

Table 1 Safety precautions			
	Warning: The DC link potential of this board is up to 400 V _{DC} . When measuring voltage waveforms by oscilloscope, high voltage differential probes must be used. Failure to do so may result in personal injury or death.		
	Warning: The evaluation or reference board contains DC bus capacitors which take time to discharge after removal of the main supply. Before working on the drive system, wait five minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.		
	Warning: The evaluation or reference board is connected to the grid input during testing. Hence, high-voltage differential probes must be used when measuring voltage waveforms by oscilloscope. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.		
	Warning: Remove or disconnect power from the drive before you disconnect or reconnect wires, or perform maintenance work. Wait five minutes after removing power to discharge the bus capacitors. Do not attempt to service the drive until the bus capacitors have discharged to zero. Failure to do so may result in personal injury or death.		
	Caution: The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.		
	Caution: Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.		
	Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.		
	Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.		
	Caution: The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.		

Table of contents

Abou	It this document	1
Safet	ty precautions	
Table	e of contents	
1	Introduction	5
2	Main features of EVAL-M3-IM564	
2.1	EVAL-M3- IM564 board specifications	8
2.2	Pin assignment	11
3	Getting started with EVAL-M3-IM564	
3.1	Setting up the system	
3.2	iMOTION [™] development tools and software	15
3.2.1	MCEWizard setup overview	15
3.2.2	MCEDesigner setup overview	
4	Hardware description of EVAL-M3-IM564	20
4.1	Boost PFC section using CIPOS™ Mini IPM	20
4.1.1	AC voltage sensing and MCEWizard configuration	20
4.1.2	Hardware modification for AC voltage sensing to work with IRMCF188	21
4.1.3	PFC external current feedback configuration and calculation	22
4.1.4	PFC overcurrent protection circuit and PFC Gatekill configuration	23
4.2	Inverter section using CIPOS™ Mini IPM	24
4.2.1	DC bus sensing and MCEWizard configuration	25
4.2.2	Motor external current feedback configuration and calculation	26
4.2.3	Inverter overcurrent protection and motor Gatekill configuration	27
4.3	Thermistor/NTC characteristics and protection calculation	28
4.3.1	CIPOS™ internal NTC – thermistor characteristics	28
4.3.2	Overtemperature hardware protection circuit	
4.3.3	NTC shutdown value calculation and configuration	
4.4	System thermal resistance testing	
4.4.1	Heatsink thermal resistance	
4.4.2	System power output capability	
4.5	Auxiliary power supply	
4.6	Schematics for EVAL-M3- IM564	
4.1	PCB layout for EVAL-M3- IM564	
5	Bill of material	40
6	Reference	45
Revis	sion history	46

1 Introduction

The EVAL-M3-IM564 evaluation power board is a part of the iMOTION[™] modular application design kit for motor drives (iMOTION[™] MADK). In order to run a motor, the matching control board is required to interface this power board.

The MADK platform is intended for use with various power stages and different control boards. These boards can easily be interfaced through the 30-pin iMOTION[™] MADK M3 such as EVAL-M3-102T, or the 20-pin iMOTION[™] MADK M1 interface connector to control board. This board is equipped with a 30-pin M3 connector and is intended for single-motor control only.

This evaluation board is designed to provide an easy-to-use power stage based on the Infineon's CIPOS[™] Mini intelligent power module (IPM). The board is equipped with all assembly groups for sensorless field-oriented control (FOC). It provides a single-phase AC-connector, rectifier, boost PFC and 3-phase output for connecting the motor. The power stage also contains emitter shunts for current sensing and a voltage divider for DC-link voltage measurement.

The EVAL-M3-IM564 evaluation board is available through regular Infineon distribution partners as well as on Infineon's website. The features of this board are described in the main features chapter of this document, whereas the remaining paragraphs provide information to enable the customers to copy, modify and qualify the design for production according to their own specific requirements.

Environmental conditions were considered in the design of the EVAL-M3-IM564, but the board is not qualified in terms of safety requirements or manufacturing and operation over the entire operating temperature range or lifetime. The boards provided by Infineon are subject to functional testing only.

The block diagram of the EVAL-M3-IM564 is depicted in Figure 1. This evaluation board includes an EMI filter and soft power-up circuit, 30-pin iMOTION[™] MADK-M3 interface connector, auxiliary power supply to provide 15 V and 3.3V, PFC gate drive circuit and the CIPOS[™] Mini IPM IM564-X6D/IM564-X6DS.

Figure 1 The block diagram of the EVAL-M3-IM564

The hardware circuit regarding overtemperature and overcurrent protection is also included in this power board. The sense connection to the common emitter shunt resistor is connected to the 30-pin iMOTION[™] MADK-M3 interface connector. This power board is compatible with PFC integrated CIPOS[™] Mini IPMs that feature 3-phase common emitters and built-in NTC considering motor power rating and IPM's current rating.

Evaluation boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD). Evaluation boards are intended to be used under laboratory conditions by technical specialists only.

2 Main features of EVAL-M3-IM564

EVAL-M3-IM564 is an evaluation board for motor drive applications with single-phase, integrated PFC and 3-phase IPM. Combined in a kit with one of the available MADK control board options, it demonstrates Infineon's motion control IC and IPM technology for motor drives with single-phase PFC.

Main features of CIPOS[™] Mini IPM IM564-X6D/IM564-X6DS include:

- 3 half bridges with TRENCHSTOP[™] 20 A/600 V and antiparallel diodes for inverter section
- 20 A/600 V CoolMOS[™] power MOSFETs and rapid switching emitter-controlled diodes for PFC section
- Lead-free terminal plating; RoHS compliant
- Very low thermal resistance due to DCB
- Rugged SOI gate driver technology with stability against transient and negative voltage
- Negative potential allowed up to VS =-11 V for single transmission at VBS=15 V
- Integrated bootstrap functionality
- Overcurrent shutdown
- Temperature monitor
- Undervoltage lockout at all channels
- Low side common emitter
- Cross conduction prevention
- All six switches turn off during protection

The evaluation board characteristics include:

- Input voltage 165~265 V_{AC}
- Maximum 2800 W motor power output
- Power factor correction
- On board EMI filter
- Current sensing with single shunt
- Auxiliary power supply with 15 V, 3.3 V
- Overcurrent protection
- Overtemperature hardware protection
- Sensing of DC-link voltage
- Thermistor output
- Fault diagnostic output
- Measurement test points compatible with standard oscilloscope probes
- PCB is 148 mm \times 165 mm and has two layers with 35 μm copper each
- RoHS compliant

EVAL-M3- IM564 board specifications 2.1

Table 2 depicts the important specifications of the evaluation board EVAL-M3-IM564.

Table 2	EVAL-M3-IM564 board	specifications
		specifications

Parameters	Values	Conditions / comments	
Input			
Voltage	165 - 265 V _{rms}	lower AC input, less motor power output	
	13.3 A _{rms}	input 165 V _{AC} (enable PFC function), Pin=2200 W, f _{PWM} =6 kHz, f _{PFC} =50 kHz, T _a =25 °C, T _h =80 °C, Motor speed=2500 RPM	
Current	10 A _{rms}	input 220 V _{AC} (enable PFC function), Pin=2200 W, f_{PWM} =6 kHz, f_{PFC} =50 kHz, T_a =25 °C, T_h =80 °C, Motor speed=2500 RPM	
	12.7 Arms	input 220 V _{AC} (enable PFC function), Pin=2800 W, f_{PWM} =6 kHz, f_{PFC} =50 kHz, T_a =25 °C, T_h =80 °C, Motor speed=2500 RPM	
Output			
	2000 W	165 $V_{AC} \le$ input \le 265 V_{AC} (enable PFC function), f_{PWM} =6 kHz, f_{PFC} =50 kHz, T_a =25 °C, T_h =80 °C, Motor speed=2500 RPM	
Power(3 phases)	2800 W	$\label{eq:VAC} \begin{array}{l} 220 \ V_{AC} \leq input \leq 265 \ V_{AC} \ (enable \ PFC \\ function), \ f_{PWM} = 6 \ kHz, \ f_{PFC} = 50 \ kHz, \ T_a = 25 \ ^{\circ}C, \\ T_h = 80 \ ^{\circ}C, \ Motor \ speed = 2500 \ RPM \end{array}$	
Current new last	6.6 A _{rms}	input =220 V _{AC} (enable PFC function), p_{out} =2000 W, f_{PWM} =6 kHz, f_{PFC} =50 kHz, T_a =25 °C, T_h =80 °C, Motor speed=2500 RPM	
Current per leg	8.7 A _{rms}	input =220 V _{AC} (enable PFC function), p _{out} =2800 W, f _{PWM} =6 kHz, f _{PFC} =50 kHz, T _a =25 °C, T _h =80 °C, Motor speed=2500 RPM	
DC Bus Voltage			
Recommend DC bus voltage	380 V	Enable PFC and for higher input voltage	
Recommend DC bus voltage	340 V	Enable PFC and for lower input voltage	
Switching Frequency			
	50 kHz (typ.)	For EVAL-M3-IM564 evaluation borad	
PFC switching frequency fPFC	50 kHz (max.)	Limited by controller board EVAL-M3-102T	
Inverter switching frequency	6 kHz (typ.)	For EVAL-M3-IM564 evaluation borad	
f _{PWM}	20 kHz (max.)	Limited by controller board EVAL-M3-102T	
Current feedback			
PFC current sensing resistor	10 mΩ	RS3	
Inverter current sensing resistor	10 mΩ	RS4	
Protections			
PFC OCP1	20 A _{peak}	Set EVAL-M3-102T's PFCITRIPREF=2.57 V, so	

that R8=470 ohm, R9=1.65 kohm

Parameters	Values	Conditions / comments
	22 A _{peak}	Configured by either PFC current sensing
PFC OCP2		resistor RS3, or adapting comparator
		threshold divider resistor R5/R7 or R4/R8
Invertor OCB1	¹ 20 A _{peak}	Configured by MCEWizard only, OPA output
		Max. range peak value is 31 A _{peak} (23.8 A _{rms)}
	22 A _{peak}	Configured by changing shunt resistor RS4 , or
Inverter OCP2		adapting comparator threshold divider
		resistor R30/R31 or R19/R29
	25 A _{peak}	Configured by changing shunt resistor RS4 , or
Inverter OCP3		threshold divider resistor R40/R41, ITRIP
		positive going threshold is about 525 mV
Temperature trip level	100 °C	For controller board EVAL-M3-102T
On board power supply		
15 V	15 V ± 5 %, max. 1 A	Used for CIPOS™ IPM gate driver & cooling fan
3.3 V	3.3 V ± 2 %, max. 20 mA	Supplying the 3.3 V to the controller board
		and protection circuits
PCB characteristics		
Material	FR4, 1.6 mm thickness, 2	
	layers.	
	35 μm copper thickness	
Dimension	148 mm × 165 mm	
System environment		
Ambient temperature	25 °C	NA

¹ For iMOTION[™] IC IMC1xx, there are three types of Gatekill input source (Refer to section 4.2.3, or control board user manual for details). Please note that if you select comparator for Gatekill input source, the external Gatekill signal will be not used. And the signal I_Shunt will be compared by the internal comparator with the "Gatekill Comparator Reference" value set in MCEWizard only.

Figure 2 points out the functional groups on the top side of the EVAL-M3-IM564 evaluation board.

Figure 2 Functional groups of the EVAL-M3-IM564 evaluation board's top side

Figure 3 points out the functional groups on the bottom side of the EVAL-M3-IM564 evaluation board.

Figure 3 Functional groups of the EVAL-M3-IM564 evaluation board's bottom side

2.2 Pin assignment

General information about the connectors of the EVAL-M3-IM564 evaluation board is reported. Table 3 includes the details of the AC input connector J1.

Table 3J1- AC Line connector

S. No.	Pin	Details
1	Line	AC line input
2	Neutral	AC neutral input
3	Earth	Earth ground

Table 4 provides the details of the motor side connector J2.

Table 4J2- Motor side connector

S. No.	Pin	Details
1	W	Connected to motor phase W
2	V	Connected to motor phase V
3	U	Connected to motor phase U

Table 5 provides the pin assignments of the 30-pin iMOTION[™] MADK-M3 interface connector J3. This connector is the interface to the controller board.

Pin	Name	Pin name connectors
1	PWMUH	3.3 V compatible logic input for high side gate driver-Phase U
2	GND	Ground
3	PWMUL	3.3 V compatible logic input for low side gate driver-Phase U
4	GND	4 GND ground
5	PWMVH	3.3 V compatible logic input for high side gate driver-Phase V
6	+3.3 V	On board 3.3 V supply
7	PWMVL	3.3 V compatible logic input for low side gate driver-Phase V
8	+3.3 V	On board 3.3 V supply
9	PWMWH	3.3 V compatible logic input for high side gate driver-Phase W
10	I_U	Positive current sense output
11	PWMWL	3.3 V compatible logic input for low side gate driver-Phase W
12	I_U-	Negative current sense output or ground
13	GK	Gatekill signal – active low when overcurrent is detected
14	DCBSense	DC bus positive voltage, scaled in 0-3.3 V range by a voltage divider
15	VTH	Thermistor output
16	I_V	Not used
17	I_V-	Not used
18	I_W	Not used
19	I_W-	Not used

Table 5 J3 - iMOTION[™] MADK-M3 30-pin interface connector for controller board

Pin	Name	Pin name connectors
20	VCC	15 V power supply
21	PFCG0	3.3 V compatible logic input for PFC gate driver IC
22	GND	Ground
23	PFCG1	Not used
24	+3.3 V	On board 3.3 V supply
25	PFCGK	PFC Gatekill signal – active low when PFC overcurrent is detected
26	DCBSense	DC bus positive voltage, scaled in 0-3.3 V range by a voltage divider
27	VAC+	AC voltage sensing positive cycle
28	VAC-	AC voltage sensing negative cycle
29	IPFC+	PFC current sensing positive
30	IPFC-	PFC current sensing negative

3 Getting started with EVAL-M3-IM564

In order to run the motor system, a combination of the iMOTION[™] MADK power board (EVAL-M3-IM564) and the matching MADK control board is required. The iMOTION[™] software tools, MCEDesigner and MCEWizard, are also required in order to initially set up the system, as well as to control and fine-tune the system performance to match users' exact needs. This chapter provides more details on setting up the system and getting started with the iMOTION[™] MADK development platform.

Note: If you are using an EVAL-M3-102T control board, please make the following changes to better match EVAL-M3-IM564 for OPA's gain and PFC OCP level.

- 1. Delete R6 and R10 of EVAL-M3-102T
- 2. R13 of EVAL-M3-102T from 2 kohm change to 0 ohm
- 3. R25 of EVAL-M3-102T from 1 kohm change to 0 ohm
- 4. R8 of EVAL-M3-102T from 24 kohm change to 470 ohm R9 of EVAL-M3-102T from 470 ohm change to 1.65 kohm for PFCTRIPREF

3.1 Setting up the system

After downloading and installing the iMOTION[™] PC tools (MCEWizard and MCEDesigner), the following steps need to be taken in order to run the motor. Refer to user manual for iMOTION[™] MADK control board such as (EVAL-M3-102T), MCEWizard and MCEDesigner documentation for more information.

Figure 4 shows the system connection using EVAL-M3-IM564 and control board (used control board EVAL-M3-102T for example).

Figure 4 System connection example using EVAL-M3-IM564

- 1. Connect PC-USB connector on the on-board debugger to the PC via USB cable.
- 2. Connect EVAL-M3-IM564's MADK M3 30-pin interface connector (J3) to control board (see Figure 4).
- 3. Get the latest "IMC102T-F064 MCE Software Package" available on <u>www.infineon.com/imotion-software</u> website. (Infineon iMOTION[™] control IC IMC102T-F064 is used for control board EVAL-M3-102T).
- 4. Connect motor phase outputs to the motor.
- 5. Use MCEWizard to enter the motor and evaluation board hardware parameters, and click button "Export to Designer file (.txt)" to system drive parameters' file which will be used by MCEDesigner.
- 6. Connect AC power to power input connector (J1) and power-on system.
- 7. Open MCEDesigner and open MCEDesigner default configuration file (.irc) for IMC102T devices (IMC102T_xx.irc) by clicking "File" menu and select "Open" in the pull down list.
- 8. Import system drive parameters' file (generated in step 5) into MCEDesigner by clicking "File" > "Import Drive Parameters." Select "Update All" radio button.
- 9. Program the MCE firmware and system parameters into the internal flash memory of iMOTION[™] IC by clicking "Tools > Programmer "in the pull-down menu, and then clicking on the "Program Firmware and Parameter" radio button. See the chapter "MCEDesigner setup overview" in Section 3.2.2 for more details. If the latest version of MCE firmware is already programmed into the IMC102T-F064 IC, then programming firmware can be skipped by selecting "Program Parameters" radio button option. Finally click "Start" button to program firmware and parameters (or parameters only when programming firmware was skipped).
- 10. Start the motor by clicking the green traffic light button in the control bar.

3.2 iMOTION[™] development tools and software

The iMOTION[™] development tool installers for MCEDesigner and MCEWizard are available for download via Infineon iMOTION[™] website (<u>http://www.infineon.com/imotion-software</u>). All the available tools and software variants are listed there.

The on-board debugger uses the SEGGER J-Link's driver for UART communication with IMC102T-F064. The J-Link driver will be installed during the MCEDesigner installation. In case the driver is not installed properly, please go to <u>SEGGER J-Link website</u> to download and install the latest J-Link "Software and Documentation pack for Windows."

3.2.1 MCEWizard setup overview

After installing the MCEWizard, the shortcut for MCEWizard appears on the Windows desktop. Double-click the shortcut to open the MCEWizard, and configure the parameters for evaluation boards and motor. Figure 5 shows the "Welcome Page" for MCEWizard, where the MADK control board or power board can be selected via the pull-down list. Infineon continues to release new MADK controller and power boards. Therefore, it could happen that some of the newest power boards are not pre-configured in the MCEWizard tool, and cannot be selected via the pull-down menu. In that case, the user should select another power board (as similar as possible) and follow the MCEWizard setup steps by entering the parameter values which are specific to the chosen board. Make sure both "I have modified the circuit board" and "Enable advanced question" checkmarks are selected (or check "Customized Design for Expert User"). Please refer to the user manual of the corresponding power board for additional information.

After selecting the MADK control and power board, start the MCEWizard system setup procedure by clicking the "Next" button in the right bottom corner as shown in Figure 5.

Options Page	
Basic System C	onfiguration Options
iMOTION™ Device Configuration Options	Application Configuration Options
Product Family: IMC102T	System Info: Eval-M3-102T + Eval-M3-IM564 Evaluation Board
Controller Device Package:	Firmware Version Select: v1.03.xx v
Motor 1 PWM Frequency 6 KHz	Script Function Enable/Disable:
Motor Fast Control Rate: 1	Application Control Interface: UART ~
PFC PWM Frequency: 50 KHz	Motor Control Options
Hardware Current Sensing Configuration Options	Motor Control Mode: Speed Control v
Motor Current Shunt Configuration: Single Shunt \checkmark	Rotor Angle Calculation Method: Flux PLL Angle $ \sim$
Hall Sensor Configuration: None Hall V	System Load Monitor
	Total CPU Load: 74% usage

Figure 5 Welcome page of MCEWizard

iMOTION[™] MADK system enables users to easily test different combinations of control and power boards with their motors. Users should be familiar with the system level parameters which are related to the motor used.

There are very limited numbers of parameters which are specific to the control board or power board hardware. Table 6 provides the MCEWizard setup overview for hardware related parameters. Similar tables will be available in each control board's User Manual. Combination of this table and the corresponding table of the control board provides enough information to set up the MADK-based motor drive system in the shortest time.

	Downwortow	Value	Commont
Page	Parameter	value	Comment
Welcome Page	Control Board selecting	MADK control board name	Or select similar board (IMC101/102/IMM/IMD)
Options Page	Motor 1 Shunt Configuration	Single shunt	
Question 2	Motor Rated Amps	9 A _{rms}	GK6081-6AC31-FE
Question 3	Motor Poles	6	GK6081-6AC31-FE
Question 4	Motor Stator Resistance	0.3 ohms/phase	GK6081-6AC31-FE
Question 5	Motor Lq Inductance	2 mH	GK6081-6AC31-FE
Question 6	Motor Ld Inductance	2 mH	GK6081-6AC31-FE
Question 7	Motor Back EMF Constant(Ke)	32 V (In-rms)/krpm	GK6081-6AC31-FE
Question 8	Motor Max RPM	3276 RPM	GK6081-6AC31-FE
Question 16	Target DC BUS Voltage Initialization	360 V	For EVAL-M3-102T and EVAL-M3-IM564 only
Question 24	Controller Supply Voltage	3.3 V	For EVAL-M3-102T and EVAL-M3-IM564 only
Question 46	Max DC Bus Voltage	500 V	
Question 50	DC Bus Sensing High Resistor	2000 ΚΩ	Power board's parts
Question 51	DC Bus Sensing Low Resistor	Refer to control board user manual	Control board's parts
		(13.3 K12 for EVAL-M3-1021 default)	
Question 72	NTC Over-Temperature Voltage Threshold	Calculated as the Section 4.3.3	Refer to the control board user manual
Question 78	Inverter Dead Time	~2 us	Depends on IPM
Question 80	GateSense Low-Side Devices	High is true	
Question 81	GateSense High-Side Devices	High is true	
Question 83	Current Feedback and Sample Timing	100 mV/A	For EVAL-M3-IM564 only
Question 84	Internal ADC Gain	1	Depends on AD range
Question 93	Overcurrent Trip Level for Internal GateKill Comparator	20 A	For EVAL-M3-IM564 only
Question 107	PFC Topology	Boost PFC	
Question 104	PFC Inductance	0.519 mH	For EVAL-M3-IM564 only
Question 110	PFC Current Measurement Input Scaling	Calculated as the Section 4.1.3	
Question 114	AC Voltage Sensing High Resistor	2000 kΩ	Power board's parts

Table 6MCEWizard setup overview table

Getting started with EVAL-M3-IM564

Page	Parameter	Value	Comment
Question 115	AC Voltage Sensing Low Resistor	Refer to control board user manual	15 kΩ by default for EVAL-M3-102T
Question 117	PFC Gate Driver Polarity Low Side	High is active	
Question 118	PFC Current Sample Delay Time	0~0.67 us	Depends on SNR & switching noise

After all the MCEWizard questions are answered, the "Verify & Save Page" will be shown as in Figure 6

erity & Save Fage		
	Verify Parameters	
Calculate Parameters	Display Parameters Results	Export to MCEDesigner File (.bd)
Double-Click an item to JUMP to its a	associated question	
Information #1 : Firmware Version Firmware Version is v	v1.03.xx [For(.x), means any min version between .	.0 to .9]
Information #2 : System DC Bus Fe The DC Bus Feedbac	eedback Scaling k Scaling is 8.20 counts/Volt and max measurable v	oltage is 499.54V
Information #3 : Motor 1 Current F The Motor Current Fe	eedback Scaling eedback Scaling is 124.12 counts/Apk and range is -	-2.01 to +30.99 Apk
Information #4 : System Configura ->MCE Device OverC ->Motor Current Sen ->Current Feedback: ->Angle Feedback: F ->Motor Control Mod ->Application Control	tion Options urrent Level: 20 A sing Range -2.01 to +30.99 Apk Type: Single Shunt lux PLL Angle e: Speed Control I Input: UART	
Information #5 : PFC Vac Scaling The PFC Vac feedbac	k scaling is 4.62 counts/Vpk and max measurable v	roltage is 443.30 Vpk
Information #6 : PFC current limit The PFC rectification	limit is 18 A	
Information #7 : PFC Configuration ->Topology: Boost	Options	

Figure 6 Verify and save page for MCEWizard

Click the "Calculate" button and "Export to Designer File (.txt)" button to save the parameter file, which will be used by the MCEDesigner in the next steps.

3.2.2 MCEDesigner setup overview

After installing MCEDesigner installer, there is a shortcut for MCEDesigner on the Windows desktop. Doubleclick the shortcut to open MCEDesigner, and then open "IMC102T_xx.irc" file, and resize the windows for better display, as shown in Figure 7.

Figure 7 MCEDesigner's main display for IMC102T

To program system-drive parameters into IMC102T-F064, please click the "Tools" menu and select "Programmer" in the pull-down list. The pop-up window "Program IMC controller" will show up as in Figure 8. Click on the "Program Parameters" radio button (this is the default option), and then select the Drive System Parameter file created using MCEWizard by clicking on "Browse." Finally, click on the "Start" button to program the parameter file into the IMC102T-F064 IC.

Program IMC controller	?	×
Information Example Connection Port COM6 DLL Version: V1.03.01 Release Time: 2019-11-26 Connection Port COM6		
Operation Options Program Parameters C Program Firmware and Parameters C Program Script C Program Co	mbined Fil	e
File		
Program Parameter File 20200115\/M564_GK6081-6AC31-FE_50K6K_Test_360V_20200605gain12.txt	Browse.	
Program Firmware File Test_Wizard_IRC-T20200115\IMC102T-F064\IMC102T-F064_A_V1.03.01.ldf	Browse.	
Program Script File	Browse.	
Program Combined File	Browse.	
Start	Cance	el

Figure 8 "Program IMC controller" pop-up window

After the drive system parameter file has been programmed into the IMC102 controller, and the motor drive system is powered, the MCEDesigner can be used to start/stop the motor, display motor current traces, change the motor speeds, modify drive parameters and carry out many other functions. Please refer to the MCEDesigner documentation for more details.

Note: On-board debugger portion of EVAL-M3-102T is galvanically isolated from the controller portion and the attached power board. In order to program the parameters or firmware to the IMC102T-F064 controller, the 3.3 V DC voltage needs to be supplied to the controller portion of the EVAL-M3-102T. This voltage can either be supplied by the power board (MADK power boards are designed to supply the 3.3 V to the control board through M3 connector) or by feeding the 3.3 V DC voltage to the control board through some of the available 3.3 V access/test points if the power board is not attached to the EVAL-M3-102T control board.

To program new firmware and drive system parameters into IMC102T-F064, please click "Tools" menu and select "Programmer" in the pull-down list. The pop-up window "Program IMC controller" will show up as in Figure 9. Click on the "Program Firmware and Parameter" radio button, and select the Drive System Parameter file created using MCEWizard by clicking on the "Browse" button on the row of "Program Parameter File," and then select the firmware file by clicking on the "Browse" button on the row of "Program Firmware File." Finally, click on the "Start" button to program the parameter file into the IMC102T-F064 IC.

Program IMC controller	?	×
Information DLL Version: V1.03.01 Release Time: 2019-11-26 Connection Port: COM	;	
Operation Options C Program Parameters Program Firmware and Parameters Program Script Program C	ombined F	le
File		
Program Parameter File 20200115\IM564_GK6081-6AC31-FE_50K6K_Test_360V_20200605gain12.txt	Browse	
Program Firmware File Test_Wizard_IRC-T20200115\IMC102T-F064\IMC102T-F064_A_V1.03.01.Idf	Browse	
Program Script File	Browse	
Program Combined File	Browse	
Start	Cano	el

Figure 9 Program firmware and parameter in "Program IMC Controller" pop-up window

All the latest firmware files for different types of iMOTION[™] control ICs are available for download via the Infineon iMOTION[™] website (<u>http://www.infineon.com/imotion-software</u>).

4 Hardware description of EVAL-M3-IM564

To meet individual customer requirements and make the EVAL-M3-IM564 evaluation board a basis for development or modification, all necessary technical data like schematics, layout and components are included in this chapter.

4.1 Boost PFC section using CIPOS[™] Mini IPM

Figure 10 depicts the schematic from the AC input connector J1 to the rectified DC bus voltage DCBUS. This circuitry includes a passive EMI filter consisting of elements X2, Y2 capacitors and common mode inductor, a 25 A/1200 V rectifier bridge D1, a fuse F1 for circuit protection, a PTC resistor PTC1, and a relay RY1 for soft powering up and reducing conduction losses in steady state. The PFC section is implemented using the CIPOS[™] Mini IPM as sketched in Figure 10. The IRS44273L is used to drive MOSFETs for the PFC section.

Figure 10 Schematic for EMI filter and PFC section of the EVAL-M3-IM564 evaluation board

The PFC section of CIPOS[™] IPM IM564-X6D/IM564-X6DS contains a CoolMOS[™] power MOSFET and a rapidswitching, emitter-controlled diode. Two electrolytic capacitors CE1 and CE2 are used for buffering the rectified DC bus voltage DCBUS.

4.1.1 AC voltage sensing and MCEWizard configuration

AC voltage sensing is by default in front of the D1 rectifier bridge, as shown in Figure 10. To drive the boost PFC circuitry for EVAL-M3-IM564, the default matching MADK control board is EVAL-M3-102T. Figure 11 shows the VAC sensing schematic of the EVAL-M3-102T evaluation board.

Figure 11 The AC voltage sensing schematic of EVAL-M3-102T

The configuration of PFC topology in MCEWizard is shown in Figure 12.

Figure 12 Vac sensing method configuration for EVAL-M3-102T and EVAL-M3-IM564

The high-side resistors R1 and R2 or R9 and R10 for the AC voltage sensing resistor divider on the power board EVAL-M3-IM564 is 2000 k Ω , and should be configured in MCEWizard as shown in Figure 13. For the low-side resistor value, please refer to the User Manual of the corresponding control board.

MCEWizard 2.3.0.0 - C:\Users\mliu1\Documents\My work\2020\EVAL-M3-IM564-A\f File Jump to Page Help Question 114 : PFC Hardware - AC Voltage Sensing High Resistor	VAL-M3-IM564-A-V3-20200605\ X
PFC Hardware Question 114 - AC Voltage Sensing High Resistor Normally a resistor divider is used for AC voltage sensing. Please specify the high resistor value. so that the internal voltage scaling can be calculated based on attenuation of resistor divider.	Expand Picture
	High Resistor Low Resistor
Answer:	2000 KOhms

Figure 13 AC voltage sensing configuration in MCEWizard

4.1.2 Hardware modification for AC voltage sensing to work with IRMCF188

As mentioned in the previous setion, AC voltage sensing is by default in front of the D1 rectifier bridge for the EVAL-M3-IM564 power board, as shown in Figure 10. But for the control board EVAL-M3-188 with controller IC IRMCF188, AC voltage sensing should be behind the rectifier bridge D1. To work with control board EVAL-M3-

Hardware description of EVAL-M3-IM564

188 or IRMCF188, power board EVAL-M3-IM564 should be modified by assembling 1 MΩ AC voltage sensing resistors R2A and R10A and removing the resistors R2 and R10.

4.1.3 PFC external current feedback configuration and calculation

The PFC shunt resistor RS3 is 5 mΩ for EVAL-M3-IM564. But for control board EVAL-M3-102T, the current input value is product of the shunt resistance in milliohms and gain of external current sense amplifier as shown in Figure 14.

PFC current shunt feedback and sample timing Figure 14

Figure 15 depicts PFC current feedback-sensing circuitry on the EVAL-M3-102T evaluation board. Please note that the default external amplification gain is less than 1 for current sense in this evaluation board.

The PFC current feedback circuit for EVAL-M3-102T evaluation board Figure 15

$$Gain = \frac{R_{17}}{R_{15} + R_{22}} = 12$$

Based on this calculation, the PFC current measurement input scaling of EVAL-M3-IM564 is 120 mV/A. Please use the same procedure to calculate the current input for other combinations of MADK boards and enter it into MCEWizard.

4.1.4 PFC overcurrent protection circuit and PFC Gatekill configuration

OCP1 of PFC protection circuit for EVAL-M3-IM564 as shown in Figure 16, the PFC current-sensing input polarity is non-inverting, so please reset the protection reference voltage of EVAL-M3-102T evaluation board.

Figure 16 PFC OCP1 on the EVAL-M3-IM564 evaluation board

For example:

If R8=470 ohm and R9=1.65 kohm, then V_{PFCTRIPREF}=2568 mV, the PFC cycle by cycle current limit is as follows,

$$I_{OCP1} = \frac{V_{REF} - V_{offset}}{Gain * R_s}$$

Where,

$$I_{OCP1} = \frac{2568 \ mV - 166 \ mV}{12 * 10} = 20 \ A_{peak}$$

If a larger PFC current-protection setting value is needed, please modify the R8 and R9 of EVAL-M3-102T board and refer to the control board's user manual for more details.

OCP2 of PFC protection circuit for EVAL-M3-IM564 as shown in Figure 17, please note that for control board EVAL-M3-102T, the external PFC gatekill signal PFCGK is not used. This MADK board connects the PFCGK to the motor GK temporarily for PFC overcurrent protection when using control board EVAL-M3-102T.

Note: The PFC overcurrent protection circuit only generates the signal of PFCGK; there is no further action for EVAL-M3-IM564. The power board will not turn off the PFC gate driver IC if the control board is disable when the PFCGK is active.

Figure 17 The PFCTRIPREF circuit on the EVAL-M3-102T evaluation board

The calculation formula is as follows,

$$\frac{I_{OCP2} \times RS_3 \times Gain + V_{offset}}{\frac{R_8}{R_4 + R_8}} = 3.3 \times \frac{R_5}{R_7 + R_5}$$

Where,

$$I_{0CP2} = \frac{3.3 \times \frac{R_5}{R_7 + R_5} \times \frac{R_8}{R_4 + R_8} - V_{offset}}{RS_3 \times Gain} = 22 A_{peak}$$

If a larger PFC current-protection setting value is needed, please reconfigure the adapting comparator threshold divider resistor R5/R7 or R4/R8.

4.2 Inverter section using CIPOS[™] Mini IPM

The inverter section is also implemented using the CIPOS[™] Mini IPM as sketched in Figure 18. The inverter section of the IPM module includes an optimized SOI gate driver and a three-phase inverter consisting of TRENCHSTOP[™] IGBTs and anti-parallel diodes.

The three pairs of capacitors C14 and C15, C16 and C17, C22 and C23 are used as bootstrap capacitors to provide the necessary floating supply voltages V_{BS1} , V_{BS2} and V_{BS3} , respectively.

Figure 18 Schematic of the 3-phase inverter section using CIPOS™ Mini IPM on EVAL-M3-IM564

4.2.1 DC bus sensing and MCEWizard configuration

Pin 14 and pin 26 of connector J3 provide access to the DC-link voltage DCBsense. Three possible feedback cases are associated with these pins. Figure 19 provides the DC bus sense resistor details. By default, the resistor R21 is not mounted on EVAL-M3-IM564. A pull-down resistor must be mounted on the corresponding controller board.

Figure 19 DC bus sense resistor on EVAL-M3-IM564 evaluation board

If a pull-down resistor of 13.3 kΩ referred to ground is inserted either on the EVAL-M3-IM564 evaluation board or on the control board, the DCBSense voltage results in the range of 0 to 3.3 V on the pin reflecting a DC bus voltage range of 0 to 420 V. If a pull-down resistor of 13.3 kΩ is inserted on both the EVAL-M3-IM564 evaluation board and on the control card, the DCBSense results scale to 0-1.65 V. No safety issue occurs. If no feedback is desired on the DCBSense pin, R6 or R14 should be removed to avoid high voltage on the connector.

The high-side resistors R6 and R14 for the DC bus sensing resistor divider on the controller board EVAL-M3-IM564 are 2000 k Ω , and should be configured in MCEWizard as shown in Figure 20. For the low-side resistor value, please refer to the User Manual of the corresponding control board (typical is 13.3 k Ω).

Figure 20 DC bus sensing configuration in MCEWizard

4.2.2 Motor external current feedback configuration and calculation

The current input value is a product of the shunt resistance in milliohms and gain of external current sense amplifier for EVAL-M3-102T, as shown in Figure 21.

Figure 21 Current shunt feedback and sample timing for EVAL-M3-102T

The external amplifier gain circuit can be found in the schematics or user manual for the control board (for example, EVAL-M3-102T see Figure 22).

Figure 22 depicts IU+ current feedback sensing circuity on the EVAL-M3-102T evaluation board. Please note that the default external gain is 5/6 for the EVAL-M3-102T control board. However, since the EVAL-M3-IM564 power board has been configured with an external op-amp with a gain of 10, the following modifications to the circuit of the EVAL-M3-102T control board are recommended for more accurate gain calculations. The resistor R10 on the EVAL-M3-102T needs to be removed and R13 needs to be change to 0 ohm.

Figure 22 The part of current feedback on the EVAL-M3-102T evaluation board

$$Gain = \frac{R_{50}}{R_{43} + R_{51}} = 10$$

Based on this calculation, the motor current input scaling of EVAL-M3-IM564 is 100 mV/A. Please use the same procedure to calculate the current input for other combinations of MADK boards, and enter it into MCEWizard.

The MCEWizard setting as shown in Figure 23.

Figure 23 Current feedback configuration in MCEWizard for EVAL-M3-102T and EVAL-M3-IM564

4.2.3 Inverter overcurrent protection and motor Gatekill configuration

Figure 24 displays the overcurrent protection circuitry. The current sensing signal INV_ADC is connected to ITRIP via the threshold divider resistor R41/R40, and ITRIP is filtered through capacitor C38.

Figure 24 Overcurrent protection circuit on the EVAL-M3-IM564 evaluation board

The typical value of ITRIP positive-going threshold $V_{IT, TH+}$ is 525 mV. So the inverter output peak current is calculated by

$$I_{trip} = \frac{V_{IT,TH+} \times \frac{R_{41} + R_{40}}{R_{40}} - V_{offset}}{R_{shunt} \times Gain}$$

If the motor peak current is larger than the setting value I_{trip} for more than ITRIP input filter time, VFO will trigger low, which means that the gatekill signal is active. For iMOTION™ IMC1xx control IC, there are three

types of gatekill input source (as shown in Figure 25). Either input source, iMOTION[™] control IC will stop the motor when the gatekill signal is active.

In order to get high power output for this MADK board, the board uses a very low resistance R_{shunt} with 10 m Ω . The inverter overcurrent protection signal (gatekill) comes from an external comparator (U8). The ITRIP of IPM is not used any longer.

But please note that if the comparator is selected for gatekill input source, the external gatekill signal will not be used. And the current-sensing signal I_Shunt will be compared by the internal comparator with the "Gatekill Comparator Reference" value set in MCEWizard only.

Figure 25 Gatekill configuration in MCEWizard for EVAL-M3-102T

4.3 Thermistor/NTC characteristics and protection calculation

This board provides thermistor/NTC output on pin 15 of the 30-pin connector J3. Temperatures can be calculated by resistor measurement.

4.3.1 CIPOS[™] internal NTC – thermistor characteristics

The thermistor characteristics for CIPOS[™] Mini IPM with built-in NTC are listed in Table 7.

D	Condition	Grandinal	Value	Value		
Description		Symbol	min	typ	max	Unit
Resistor	T _{NTC} = 25°C	R _{NTC}	79.638	85.000	90.362	kΩ
Resistor	T _{NTC} = 50°C	R _{NTC}	28.400	29.972	31.545	kΩ
Resistor	$T_{\rm NTC} = 60^{\circ} C$	R _{NTC}	19.517	20.515	21.514	kΩ
Resistor	T _{NTC} = 70°C	R _{NTC}	13.670	14.315	14.960	kΩ
Resistor	T _{NTC} = 80°C	R _{NTC}	9.745	10.169	10.593	kΩ
Resistor	$T_{NTC} = 90^{\circ}C$	R _{NTC}	7.062	7.345	7.628	kΩ

Table 7 CIPOS[™] internal NTC – thermistor characteristics

			Value	Value		
Description Condition	Symbol min	min	typ	max	Unit	
Resistor	T _{NTC} = 100°C	R _{NTC}	5.199	5.388	5.576	kΩ
Resistor	T _{NTC} = 110°C	R _{NTC}	3.856	4.009	4.163	kΩ
Resistor	T _{NTC} = 120°C	R _{NTC}	2.900	3.024	3.149	kΩ
Resistor	Т _{NTC} = 125°С	R _{NTC}	2.527	2.639	2.751	kΩ
B-constant of NTC		B(25/100)		4092		К

The VFO pin of CIPOS[™] modules provides direct access to the NTC, which is referenced to VSS. An external pullup resistor connected to +3.3 V ensures that the resulting voltage can be directly connected to the microcontroller.

Figure 26 depicts the CIPOS[™] internal circuit at pin VFO. An external pull-up resistor is required to bias the NTC.

Figure 26 Internal circuit at pin VFO for CIPOS[™] IPM IM564-X6D/IM564-X6DS

4.3.2 Overtemperature hardware protection circuit

The VFO pin not only provides direct access to the NTC, but also indicates a module failure in case of undervoltage at pin VDD or in case of triggered overcurrent detection at ITRIP. In these evaluation design kits EVAL-M3-IM564 and EVAL-M3-102T, the VFO pin is directly connected to the gatekill pin for controller IC IMC102T.

But for the iMOTION[™] 100 series control board, the maximum input low voltage of gatekill for IRMCF1xx is 0.8 V. The NTC thermal resistor is about 3.0 kΩ at 120 °C. The resistors R44 and R45 for the power board EVAL-M3-IM564 are chosen properly to make sure the voltage of VFO is 0.8 V at 120 °C. The gatekill will then "ask" the microcontroller to stop generating PWM pulses if the temperature of NTC continues to rise.

Figure 27 Overtemperature protection circuit schematic for EVAL-M3-IM564 and EVAL-M3-102T

4.3.3 NTC shutdown value calculation and configuration

External NTC temperature shutdown value can be calculated as shown below and configured in MCEWizard as shown in Figure 28. For pull-up resistors on the evaluation control board, please refer to the control board's User Manual. For example, for EVAL-M3-102T, the pull-up resistor on the control board is 4.87 k Ω . The value of resistors R44 and R45 on EVAL-M3-IM564 are 9.1 k Ω and 10 k Ω (see Figure 27). The typical value of R_{NTC} at 100 °C is 5.388 k Ω for IPM IM564-X6D/IM564-X6DS, which is used in EVAL-M3-IM564.

$$V_{FO} = \frac{\frac{R_{NTC@setting temperature} \times (R_{61} + R_{18})}{R_{NTC@setting temperature} + (R_{61} + R_{18})}}{\frac{R_{NTC@setting temperature} \times (R_{61} + R_{18})}{R_{NTC@setting temperature} + (R_{61} + R_{18})} + \frac{R_{44} \times (R_{45} + R_{5})}{R_{44} + (R_{45} + R_{5})}} \times V_{DD}$$

$$V_{TH} = \frac{R_{45} \times V_{DD} + R_{5} \times V_{FO}}{R_{45} + R_{5}}$$

EVAL-M3-IM564 User Manual iMOTION[™] Modular Application Design Kit

Hardware description of EVAL-M3-IM564

If the setting temperature is 100 °C, R_{NTC@setting temperature} =5.576 kohm, and the shutdown value should be 2.33 V. If the setting temperature is 80 °C, $R_{NTC@setting temperature} = 10.593$ kohm, and the shutdown value should be 2.36 V.

Figure 28 External temperature sense input configuration in MCEWizard

System thermal resistance testing 4.4

Heatsink thermal resistance 4.4.1

In order to test the thermal impedance of heatsink to ambient R_{thCA}, the DC source is used to conduct the IPM internal diodes, as shown in Figure 29. With the DC source voltage increasing, current through IPM I_{IPM} and voltage on IPM VIPM are monitored by current and voltage meter, the IPM case-temperature test point is between IPM and heasink, as shown in Figure 29 below, the same as Tc point of inverter IGBT of the IPM daasheet [1].

Figure 29 Heatsink thermal testing set-up

Thermal resistance between junction to ambient R_{thJA} is divided into 2 parts as in the following formula: thermal resistance between junction to case R_{thJC} and thermal resistace between case to ambient R_{thCA}.

EVAL-M3-IM564 User Manual iMOTION[™] Modular Application Design Kit Hardware description of EVAL-M3-IM564

$$R_{thJA} = R_{thJC} + R_{thCA}$$

Thus we get the following formula:

$$R_{thCA} = \frac{\Delta T_{CA}}{P_{D,tot}} = \frac{T_C - T_A}{V_{IPM} \times I_{IPM}}$$

According to the test set-up, the test results are shown in Figure 30 below. The IPM case temperature is detected for about one hour, until the temperature is stable.

Figure 30 Heatsink thermal testing result

Therefore, the final case-to-ambient resistance value is roughly:

$$R_{thCA} = 2.4 \,^{\circ}\text{C}/W$$

Please note that thermal resistance is calculated with a fan voltage of 10 V. For higher power capability, fan input voltage can be increased up to 15 V by U10 (IFX91041EJV, DC-DC voltage regulator), which controls the fan voltage based on the PFC current sensing op-amp output voltage.

4.4.2 System power output capability

In order to test the total ouput power capability of the MADK system as in Figure 2, the DCB case temperature is tested with different MADK output power.

Test conditions are: ambient temperature Ta=25 ℃, AC input voltage is VAC=220 V/50Hz, bus voltage is VDC=380 V, PFC PWM frequency is 50 kHz and inverter frequency is 6 kHz.

Figure 31 MADK ouput power capability test result

Hardware description of EVAL-M3-IM564

With the MADK output power increasing, the IPM DCB PFC test point and IGBT test point temperature are monitored. The final test results are shown in Figure 31.

4.5 Auxiliary power supply

Figure 32 depicts the schematic of the auxiliary power supply for the EVAL-M3-IM564 board. The circuit includes an ICE5QR4770AG that is used to generate 15 V and 6 V through the QR flyback topology from the DC bus.

Figure 32 Power supply section of the EVAL-M3-IM564 evaluation board

The linear voltage regulator IFX1117ME V33 generates 3.3 V from a 6 V power supply. The 3.3 V power supply is used in the PFC overcurrent comparator circuit and overtemperature hardware protection circuit. Both 15 V and 3.3 V are also present on the 30-pin iMOTION[™] MADK-M3 interface connector J3 to power circuitry on the control board.

4.6 Schematics for EVAL-M3- IM564

The PFC section schematic for EVAL-M3- IM564 is provided in Figure 33.

Figure 33 PFC section schematics for EVAL-M3- IM564

The inverter section schematic for EVAL-M3- IM564 is provided in Figure 34.

Figure 34 Inverter section schematics for EVAL-M3- IM564

The auxiliary power supply section schematic for EVAL-M3- IM564 is provided in Figure 35.

Figure 35 Auxiliary power supply section schematics for EVAL-M3- IM564

4.7 PCB layout for EVAL-M3- IM564

The layout of this board can be used for different voltage or power classes. By default, the PCB has two electrical layers with 35 μ m copper, and dimensions of 148 mm × 165 mm. The PCB board thickness is 1.6 mm. You can contact our technical support team for more detailed information and the latest Gerber files.

Figure 36 illustrates the top assembly print of the evaluation board.

Figure 36 Top assembly print of the EVAL-M3-IM564 evaluation board

Figure 37 depicts the bottom assembly print of the evaluation board.

Figure 37 Bottom assembly print of the EVAL-M3-IM564 evaluation board

The top layer routing of the PCB is provided in Figure 38.

Figure 38 Top layer routing of the EVAL-M3-IM564

Figure 39 illustrates the bottom layer routing of the PCB.

Figure 39 Bottom layer routing of the EVAL-M3-IM564

5 Bill of material

Table 8 provides the complete bill of materials for the EVAL-M3-IM564.

Table	able 8 Bill of materials					
No.	Qty	Part description	Designator	Part number	Manufacturer	
1	6	CAP CER 0.1UF 630V X7R 1210	C1, C18, C57, C58, C59, C60	C1210C104KBRAC78 00	KEMET	
2	10	CAP CER 1000PF 25V X7R 0603	C2, C11, C24, C25, C28, C29, C31, C32, C74, C75	885012206059	Wurth Electronics Inc.	
3	3	CAP CER 100PF 25V X7R 0603	C4, C9, C13,	885012206053	Wurth Electronics Inc.	
4	2	CAP CER 300PF 25V X7R 0603	C7, C45	885012208043	Wurth Electronics Inc.	
5	12	CAP CER 0.1µF 25V X7R 0603	C3, C12, C15, C17, C19, C20, C21, C23, C37, C43, C47, C54	885012206071	Wurth Electronics Inc.	
6	4	CAP CER 10PF 25V C0G/NP0 0603	C5, C44, C64, C65	885012006032	Wurth Electronics Inc.	
7	4	CAP CER 10UF 25V X5R 1206	C8, C40, C70, C71	885012108021	Wurth Electronics Inc.	
8	1	0.1µF Film Capacitor 630V Polyester	C10	890303425004CS	TDK Corporation	
9	3	CAP CER 22UF 25V X5R 1206	C14, C16, C22	TMK316BBJ226ML-T	Taiyo Yuden	
10	2	CAP FILM 2.2UF 10% 275VAC RADIAL	C26, C30	890324026034CS	Wurth Electronics Inc.	
11	1	1μF Film Capacitor 275V Polypropylene	C27	890324026027CS	Wurth Electronics Inc.	
12	2	CAP CER 4700PF 250VAC Y5U RADIAL	C33, C34	ECK-DNA472ME	Panasonic Electronic Components	
13	2	CAP CER 10000PF 440VAC Y5V RDL	C35, C36	ECK-ATS103MF6	Panasonic Electronic Components	
14	1	CAP 2.2nF 20% X1 760VAC Y1 500VAC	CY1	AY1222M47Y5UC63L0		
15	3	CAP CER 0.022UF 25V X7R 0603	C38, C50, C72	885012206067	Wurth Electronics Inc.	
16	2	CAP CER 4700PF 25V X7R 0603	C39, C41	885012206063	Wurth Electronics Inc.	
17	6	CAP CER 1UF 10V X5R 0603	C42, C53, C79, C6, C62, C63	885012106010	Wurth Electronics Inc.	

No.	Qty	Part description	Designator	Part number	Manufacturer
18	1	CAP CER 10000PF 25V X7R 0603	C48	885012206065	Wurth Electronics Inc.
19	3	CAP CER 0.22UF 25V X5R 0603	C49, C51, C76	885012106019	Wurth Electronics Inc.
20	3	CAP CER 470PF 25V X7R 0603	C46, C52, C61	885012206057	Wurth Electronics Inc.
21	1	CAP CER 1000PF 1000V X7R 1210	C68	885342209006	Wurth Electronics Inc.
22	1	CAP CER 10NF 1000V X7R 1210	C55	CGA6P1C0G3A103J2 50AC	TDK
23	1	CAP CER 120PF 50V NPO 0805	C56	CC0805GRNPO9BN1 21	Yageo
24	1	CAP CER 1000PF 100V X7R 0805	C67	885012207116	Wurth Electronics Inc.
25	2	CAP ALUM 390UF 20% 450V SNAP	CE1, CE2	861011485019	Wurth Electronics Inc.
26	5	CAP ALUM 470UF 20% 450V SNAP	CE4,CE8, CE9, CE10, CE11	860010474013	Wurth Electronics Inc.
27	2	CAP ALUM 560UF 20% 25V RADIAL	CE5, CE6	860010274012	Wurth Electronics Inc.
28	1	CAP 22 UF 20% 50 V	CE7	860010672010	Wurth Electronics Inc.
29	1	BRIDGE RECT 1PHASE 1200V 25A GBJ	D1	GBJ2512	Diodes Incorporated
30	4	DIODE SCHOTTKY 30V 200MA SC79- 2	D2, D3, D9, D13	BAT5402VH6327XTS A1	Infineon Technologies
31	1	DIODE SCHOTTKY 20V 1A SOD123L	D4	MBR120ESFT1G	ON Semiconductor
32	1	DIODE SCHOTTKY 150V 2A DO15	D5	MBR2150VGTR-E1	Diodes Incorporated
33	1	DIODE GEN PURP 1KV 1A SMA	D6	US1M-13-F	Diodes Incorporated
34	1	DIODE SCHOTTKY 100V 1A SMA	D7	B1100LB-13-F	Diodes Incorporated
35	1	DIODE GEN PURP 200V 1A SMA	D8	US1D-13-F	Diodes Incorporated
36	2	DIODE SCHOTTKY 20V 2A SMB	D10, D11	SS22T3G	ON Semiconductor
37	1	DIODE GEN PURP 150V 200MA SOD323	D12	BAV20WS-TP	Micro Commercial Co
38	1	FAN 40X28MM 12VDC TACH,PWM	FAN	9GA0412P3J01	Sanyo Denki America Inc.
39	2	CONN TERM BLOCK 3POS 9.52MM PCB	J1, J2	691 250 910 003	Wurth Electronics Inc.
40	1	HEADER 20POS SCKT R/A DL 2.54 MM & HEADER 10POS SCKT R/A DL 2.54 MM	J3	613020243121 & 613010243121	Wurth Electronics Inc.
41	1	Connector	J4	XH 2P 2.54MM	
42	1	COMMON MODE CHOKE 3MH 23A 2LN TH	L1	7448052303	Wurth Electronics Inc.
43	1	PFC INDUCTOR 519 uH +-10%	L2	ARLDC543256C521N 1B	Sunlord
44	1	FIXED 2.2uH 2.5A SMD	L4	744773022	Wurth Electronics Inc.

No.	Qty	Part description	Designator	Part number	Manufacturer
45	1	FERRITE BEAD 300 OHM 0805 1LN	L5	742792035	Wurth Electronics Inc.
46	1	FIXED IND 47UH 1.55A 136 MOHM	L6	74404084470	Wurth Electronics Inc.
47	1	LED RED CLEAR 0805 SMD	LED1	150080RS75000	Wurth Electronics Inc.
48	6	RES SMD 1MΩ 1% 1/4W 1206	R1, R2, R6, R9, R10, R14	RC1206FR-071ML	Yageo
49	6	RES SMD 10kΩ 1% 1/10W 0603	R3, R28, R45, R50, R59	RC0603FR-0710KL	Yageo
50	1	RES SMD 12kΩ 1% 1/10W 0603	R17	RC0603FR-0712KL	Yageo
51	1	RES SMD 10.5K OHM 0.1% 1/10W 0603	R4	RT0603BRD0710K5L	Yageo
52	2	RES SMD 1K OHM 0.5% 1/10W 0603	R5, R60	RT0603DRD071KL	Yageo
53	6	RES SMD 15K OHM 0.5% 1/10W 0603	R7, R8, R5, R29, R41, R44	RT0603DRD0715KL	Yageo
54	1	RES SMD 240K OHM 1% 1/10W 0603	R26	RC0603FR-07240KL	Yageo
55	1	RES SMD 10 OHM 1% 1/8W 0805	R11	RC0805FR-0710RL	Yageo
56	8	RES SMD 499 OHM 0.5% 1/10W 0603	R12, R15, R22, R25, R42, R43, R51, R53	RT0603DRD07499RL	Yageo
57	1	RES SMD 4.7 OHM 5% 1/8W 0805	R13	RC0805JR-074R7L	Yageo
58	8	RES SMD 100 OHM 0.5% 1/10W 0603	R20, R32, R34, R35, R36, R37, R38, R39	RT0603DRD07100RL	Yageo
59	1	RES SMD 4.7K OHM 5% 1/10W 0603	R23	RC0603JR-074K7L	Yageo
60	3	RES SMD 0 OHM JUMPER 1/10W 0603	R24, R52, R83	RC0603JR-070RL	Yageo
61	1	RES SMD 12.7K OHM 1% 1/10W 0603	R27	RC0603FR-0712K7L	Yageo
62	1	RES SMD 10.7K OHM 1% 1/10W 0603	R55	RC0603FR-0710K7L	Yageo
63	1	RES SMD 20K OHM 1% 1/10W 0603	R30	RC0603FR-0720KL	Yageo
64	1	RES SMD 7.5K OHM 5% 1/10W 0603	R31	RC0603JR-077K5L	Yageo
65	2	RES SMD 12K OHM 5% 1/10W 0603	R33, R85	RC0603JR-0712KL	Yageo
66	1	RES SMD 9.1K OHM 5% 1/10W 0603	R44	RC0603JR-079K1L	Yageo
67	1	RES SMD 100K OHM 5% 1/10W 0603	R47	RC0603JR-07100KL	Yageo
68	1	RES SMD 510K OHM 5% 1/10W 0603	R48	RC0603JR-07510KL	Yageo
69	1	RES SMD 68 OHM 1% 2W 2512	R49	SR2512FK-7W68RL	Yageo
70	1	RES SMD 165K OHM 1% 1/10W 0603	R54	RC0603FR-07165KL	Yageo
71	1	RES SMD 56K OHM 5% 1/10W 0603	R56	RC0603JR-0756KL	Yageo
72	1	RES SMD 22K OHM 5% 1/10W 0603	R57	RC0603JR-0722KL	Yageo

EVAL-M3-IM564 User Manual iMOTION™ Modular Application Design Kit Bill of material

No.	Qty	Part description	Designator	Part number	Manufacturer
73	9	RES SMD 2K OHM 1% 1/10W 0603	R20, R32, R34, R35, R36, R37, R38, R39, R61	RC0603FR-072KL	Yageo
74	1	RES SMD 27K OHM 5% 1/10W 0603	R21	RC0603JR-0727KL	Yageo
75	3	RES SMD 249 OHM 1% 1/4W 1206	R23	RC1206FR-07249RL	Yageo
76	3	RES SMD 2.2 OHM 5% 1/8W 0805	R24, R52, R83	RC0805JR-072R2L	Yageo
77	2	RES SMD 51 OHM 5% 1/4W 1206	R27, R55	RC1206JR-0751RL	Yageo
78	2	RES SMD 15M OHM 5% 1/4W 1206	R33, R85	RV1206JR-0715ML	Yageo
79	3	RES SMD 27 OHM 5% 1/10W 0603	R46, R63, R87	RC0603JR-0727RL	Yageo
80	1	RES SMD 3.65K OHM 1% 1/10W 0603	R40	RC0603FR-073K65L	Yageo
81	1	RES SMD 18K OHM 1% 1/10W 0603	R18	RC0603FR-0718KL	Yageo
82	1	RES 58.3K OHM 1% 1/10W 0603	R82	RN73R1JTTD5832F1 00	KOA Speer Electronics, Inc.
83	1	RES SMD 1.5K OHM 5% 1/4W 1206	R84	RC1206JR-071K5L	Yageo
84	1	RES SMD 820 OHM 5% 1/4W 1206	R86	RC1206JR-07820RL	Yageo
85	1	RES SMD 2.49K OHM 1% 1/10W 0603	R88	RC0603FR-072K49L	Yageo
86	1	RES SMD 2.2 OHM 5% 1/4W 1206	RS1	RC1206JR-072R2L	Yageo
87	1	RES SMD 2 OHM 1% 1/4W 1206	RS2	RC1206FR-072RL	Yageo
88	2	RES SMT 0.010 OHM 1% 5W 4320 RES SMT 0.010 OHM 1% 5W 2817	RS3, RS4	KRL50110D-C-R010- F-T1 SMT-2817-R010-5W	SUSUMU ISABELLENHUTTE
89	1	24VDC 16A 8pin	RY1	HF14FW-024-ZT	Hongfa relay
90	1	998Uh 100kHz, 100mV, Ls	EE20/10/6	750344279	Wurth Electronics Inc.
91	25	PC TEST POINT MINIATURE BLACK	T-3V3, T- 15V, T- DCBUS, T- Fly_D, T- GND, T- HIN1, T- HIN2, T- HIN3, T- ITRIP, T- LIN1, T- LIN2, T- LIN3, T- PFC PWM, T-PFC_D, T-PFC_G, T-PFC_S, T-SGND1,	5001	Keystone Electronics

No.	Qty	Part description	Designator	Part number	Manufacturer
			T-SGND2,		
			T-VCC T-		
			VFO. T-		
			VTH. T-W.		
			T-ZCD		
92	2	IC GP LV COMPARATOR SOT-23-5	U1, U8	LMV331IDBV	Texas Instruments
93	1	IC DRIVER LOW SIDE 1.5A SOT23-5	U2	IRS44273LTRPBF	Diodes Incorporated
94	1	IC REG LINEAR 3.3V 1A SOT223-4	U3	IFX1117MEV33HTMA 1	Infineon Technologies
95	1	IC CTLR QUASI-RES 12SOIC	U4	ICE5QR4770AGXUMA 1	Infineon Technologies
96	1	OPTOISOLATOR 5KV TRANSISTOR 4SMD	U5	FOD817BSD	ON Semiconductor
97	1	IC VREF SHUNT ADJ SOT23-3	U6	TL431BSA-7	Diodes Incorporated
98	3	IC OPAMP GP 1 CIRCUIT SOT23-5	U7, U9, U11	OPA320AIDBVR	Texas Instruments
99	1	IC REG BUCK 5V 1.8A 8DSO-27	U10	IFX91041EJV50XUMA 1	Infineon Technologies
10 0	1	DIODE ZENER 22V 500MW SOD123	ZD1	BZT52C22-7-F	Diodes Incorporated
10 1	1	IFPS MODULES 24MDIP	M1	IM564-X6D/IM564- X6DSXKMA1	Infineon Technologies
10 2	1	MOSFET N-CH 30V 2.7A SOT-23-3	Q1	IRLML2030TRPbF	Infineon Technologies

6 Reference

- [1] Datasheet of Infineon CIPOS[™] Mini IPM IM564-X6D/IM564-X6DS
- [2] Application Note AN2016-10 CIPOS[™] Mini Technical Description
- [3] AN2018-02 EVAL-M3-102T User manual
- [4] MCEWizard User Guide
- [5] MCEDesigner User Guide
- Note: All listed reference materials are available for download on Infineon's website <u>www.infineon.com/.</u> All the iMOTION MADK evaluation board's user manuals are available at <u>www.infineon.com/MADK</u> All the CIPOS[™] IPM's datasheets and documents are available at <u>www.infineon.com/IPM</u>.

Attention: Infineon's product registration is online now. Register your board, and download more information.

3 easy steps to register:

- 1. Go to <u>www.Infineon.com/</u> login to myinfineon
- 2. Click on "Product Registration"
- 3. Choose your board and enter board series number; download the related information package

Revision history

Document version	Date of release	Description of changes
1.0	2019-09-17	First release
1.1	2019-12-09	Updated BOM List §6
1.2	2020-01-17	Updated BOM List §6
1.3	2020-02-16	Updated MCEWizard & MCEDesigner screenshot (V2.1.2.0)
1.4	2020-07-16	Update schematic and PCB layout for improvement of noise issue

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-07-16

Published by Infineon Technologies AG

81726 Munich, Germany

© 2020 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference AN2019-04

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to EVALuate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contair dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.8-EVALZ ADP1740-1.5-EVALZ ADP1870-0.3-EVALZ ADP1874-0.3-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ AS3606-DB BQ25010EVM BQ3055EVM ISLUSBI2CKIT1Z LM2734YEVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ ADP122UJZ-REDYKIT ADP166Z-REDYKIT ADP170-1.8-EVALZ ADP171-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP5020CP-EVALZ CC-ACC-DBMX-51 ATPL230A-EK MIC23250-S4YMT EV MIC26603YJL EV MIC33050-SYHL EV TPS60100EVM-131 TPS65010EVM-230 TPS71933-28EVM-213 TPS72728YFFEVM-407 TPS79318YEQEVM UCC28810EVM-002 XILINXPWR-083 LMR22007YMINI-EVM