

Features

- · Ultrafast Recovery
- · Ultra soft Recovery
- Very Low I_{RRM}
- Very Low Q_{rr}
- · Specified at Operating Conditions
- Lead-Free

Benefits

- Reduced RFI and EMI
- · Reduced Power Loss in Diode and Switching Transistor
- · Higher Frequency Operation
- · Reduced Snubbing
- · Reduced Parts Count

Ultrafast, Soft Recovery Diode

$$\begin{split} V_R &= 600V \\ V_{F(TYP)}^* &= 1.3V \\ I_{F(AV)} &= 15A \\ Q_{rr}(typ.) &= 80nC \\ I_{RRM} \ (typ.) &= 4.0A \\ t_{rr} \ (typ.) &= 19ns \\ D_{I \ (rec)M}/dt \ (typ.) \ *= 160A/\mu s \end{split}$$

Description

International Rectifier's HFA15PB60 is a state of the art ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 volts and 15 amps continuous current, the HFA15PB60 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultra fast recovery time, the ultrafast recovery diode product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the tb portion of recovery. The ultrafast recovery diode features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These ultrafast advantages can help to significantly reduce snubbing, component count and heat sink sizes. The HFA15PB60 is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

		Standard Pack			
Base part number	Package Type	Form	Quantity	Orderable Part Number	
HFA15PB60PbF	TO-247AC	Tube	25	HFA15PB60PbF	

Absolute Maximum Ratings

	Parameter	Max.	Units	
V_R	Cathode -to – Anode Voltage	600	V	
I _F @ T _C = 100°C	Continuous Forward Current	15		
I _{FSM} Single Pulse Forward Current		150	Α	
I _{FRM}	Maximum Repetitive Forward Current	60	-	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	74	١٨/	
P _D @T _C = 100°C Maximum Power Dissipation		29	W	
TJ	Operating Junction and	55 to 1450	00	
T _{STG}	Storage Temperature Range	-55 to + 150	°C	

^{* 125°}C

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V_{BR}	Cathode Anode Breakdown Voltage	600				I _R = 100μA	
			1.3	1.7	V	I _F = 15A See Fig. 1	
V_{FM}	Max Forward Voltage		1.5	2.0	•	I _F = 30A	
			1.2	1.6		$I_F = 30A , T_J = 125^{\circ}C$	
	May Payaraa Laakaga Current		1.0	10		$V_R = V_R$ Rated See Fig. 2	
I _{RM} Max Reverse Leakage Current			400	1000	μA	$T_J = 125$ °C, $V_R = 0.8 \times V_R$ Rated	
Ст	Junction Capacitance		25	50	pF	$V_R = 200V$ See Fig. 3	
L _S	Series Inductance		12		ı nH	Measured lead to lead 5mm from package body	

Dynamic Recovery Characteristics @TI = 25°C (unless otherwise specified)

Dynamic Recovery Characteristics $(\underline{\omega})$ is $= 25^{\circ}$ C (unless otherwise specified)						
	Parameter	Min.	Тур.	Max.	Units	Conditions
trr			19			$I_F = 1.0A$, dif/dt = 200A/ μ s, $V_R = 30V$
trr1	Reverse Recovery Time See Fig. 5,10		42	60	ns	T _J = 25°C
trr2			74	120		T _J = 125°C
I _{RRM1}	Peak Recovery Current See Fig. 6		4.0	6.0	Α	$T_J = 25^{\circ}C$ $I_F = 15A$
I _{RRM2}	Leak Recovery Current See Fig. 6		6.5	10		T _J = 125°C V _R =200V
Q _{rr1}	Davaraa Daaayar Charga Caa Fig 7		80	180	nC	$T_J = 25^{\circ}C$ di/dt = 200A/µs
Q_{rr2}	Reverse Recovery Charge See Fig.7		220	600		T _J = 125°C
di _{(rec)M/} dt1	Peak Rate of Fall of Recovery Current		188		A /:	T _J = 25°C
di _{(rec)M/} dt2	During tb See Fig.8		160		A/µs	T _J = 125°C

Thermal -Mechanical Characteristics

	Parameter	Min.	Тур.	Max.	Units	
T _{lead} ①	Lead Temperature			300	°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case			1.7		
R _{θJA} ②	Thermal Resistance, Junction to Ambient			40	K/W	
$R_{\theta CS}$ ③	Thermal Resistance, Case to Heat Sink		0.25			
١٨/4	Mainh		6.0		g	
Wt	Weight		0.21		(oz)	
T	Mounting Targue	6.0		12	Kg-cm	
ı	Mounting Torque			10	lbf•in	

- ① 0.063 in. from Case (1.6mm) for 10 sec
- ② Typical Socket Mount
- 3 Mounting Surface, Flat, Smooth and Greased

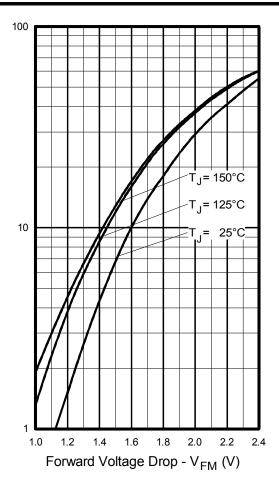


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

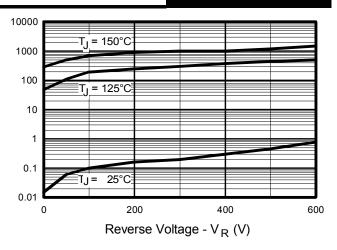


Fig. 2 - Typical Reverse Current vs. Reverse Voltage

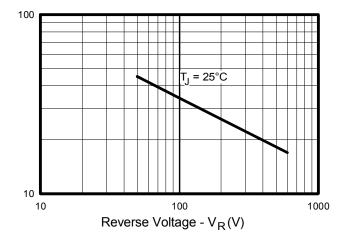


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

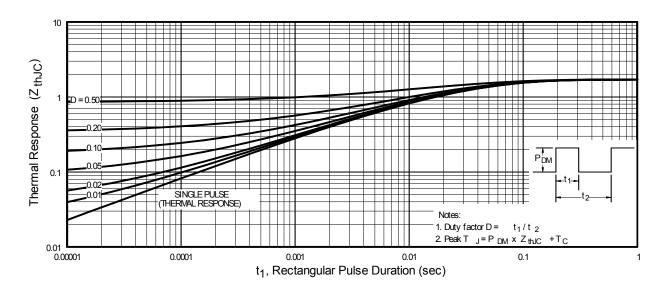


Fig. 4 - Maximum Thermal Impedance Zthjc Characteristics

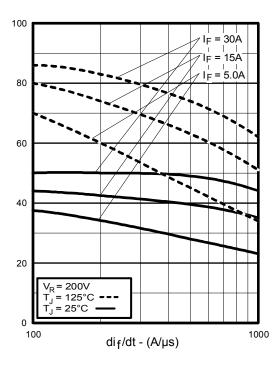


Fig. 5 - Typical Reverse Recovery vs. dif/dt

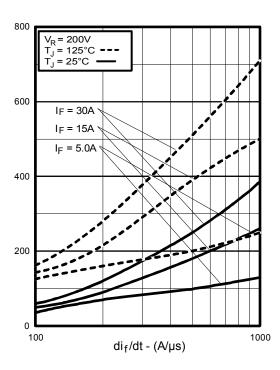


Fig. 7 - Typical Stored Charge vs. dif/dt

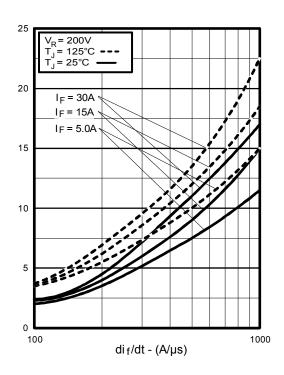


Fig. 6 - Typical Recovery Current vs. dif/dt

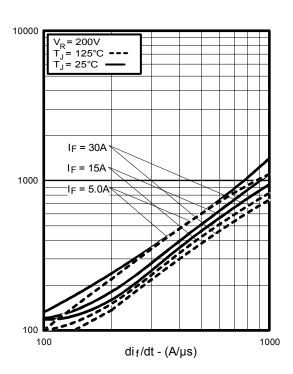
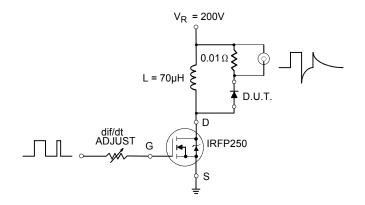
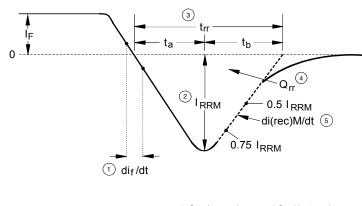




Fig. 8 - Typical di(rec)M/dt vs. dif/dt

REVERSE RECOVERY CIRCUIT

- 1. dif/dt Rate of change of current through zero crossing
 2. IRRM - Peak reverse recovery current
- IRRM Peak reverse recovery current
 Irr Reverse recovery time measured
 from zero crossing point of negative
 going IF to point where a line passing
 through 0.75 IRRM and 0.50 IRRM
 extrapolated to zero current
- 4. Qrr Area under curve defined by trr and IRRM

$$Q_{rr} = \frac{t_{rr} X I_{RRM}}{2}$$

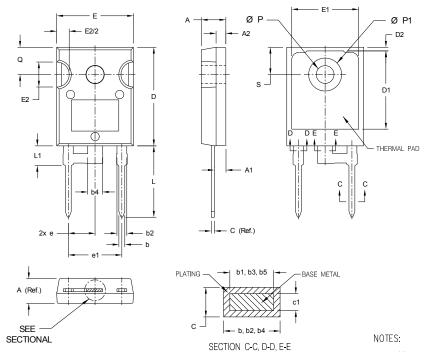
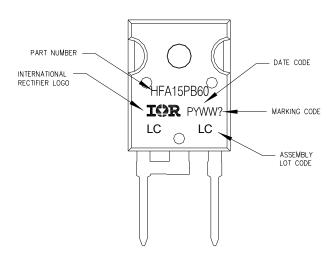

5. di(rec)M/dt - Peak rate of change of current during to portion of trr

Fig. 9 - Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions


TO-247AC Package Outline (Dimensions are shown in millimeters (inches))

SYMBOL	MILLIM	ETERS	INCHES		
SIMBOL	MIN.	MAX.	MIN.	MAX.	
A	4.65	5.31	.1831	.2091	
A1	2.21	2.59	.0870	.1020	
A2	1.50	2.49	.0591	.0980	
b	0.99	1.40	.0390	.0551	
b1	0.99	1.35	.0390	.0531	
b2	1.65	2.39	.0650	.0941	
b3	1.65	2.34	.0650	.0921	
b4	2.59	3.43	.1020	.1350	
b5	2.59	3.38	.1020	.1331	
С	0.38	0.89	.0150	.0350	
c1	0.38	0.84	.0150	.0331	
D	19.71	20.70	.7760	.8150	
D1	13.08		.5150		
D2	0.51	1.35	.0201	.0531	
E	15.29	15.87	.6020	.6248	
E1	13.46		.5299		
E2	4.52	5.49	.1780	.2161	
е	5.46	BASIC	.2150 BASIC		
L	14.20	16.10	.5591	.6339	
L1	3.71	4.29	.1461	.1689	
Q	5.31	5.69	.2091	.2240	
S	5.51 BASIC		.2169	BASIC	
øΡ	3.56	3.66	.1402	.1441	
øP1		7.39		.2909	

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

TO-247AC Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

	Industrial			
Qualification Level	(per JEDEC JESD47F) ††			
Moisture Sensitivity Level	TO-247AC	N/A		
RoHS Compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F
RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G ACGRA4007-HF ACGRB207-HF
CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60
VS-88-7272PBF 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5998