

SiC Diode

Features

- Revolutionary semiconductor material Silicon Carbide
- No reverse recovery current / no forward recovery
- Temperature independent switching behaviour
- Low forward voltage even at high operating temperature
- Tight forward voltage distribution
- Excellent thermal performance
- Extended surge current capability
- Specified dv/dt ruggedness
- Pb-free lead plating; RoHS compliant

Pin 1 and backside: Cathode
Pin 2: Anode

Potential applications

- Drives
- Industrial power supplies: Industrial UPS
- Solar central inverters and Solar string inverter

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC 47/20/22

Description

- System efficiency improvement over Si diodes
- Enabling higher frequency / increased power density solutions
- System size/cost savings due to reduced heatsink requirements and smaller magnetics
- Reduced EMI
- Highest efficiency across the entire load range
- Robust diode operation during surge events
- High reliability
- Related Links: www.infineon.com/SiC

Key performance parameters

Туре	V _{DC}	I _F	Q c	$T_{vj,max}$	Marking	Package
IDK02G120C5	1200 V	2 A	14nC	175°C	D0212C5	PG-T0263-2

Table of contents

Table of contents

Fea	atures	1
	tential applications	
	oduct validation	
	scription	
	y performance parameters	
	ble of contents	
1		
2	_	
3	Electrical Characteristics	6
4	Electrical Characteristics Diagrams	7
5		
Rev	vision history	11

Maximum ratings

1 Maximum ratings

Note:

For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

Parameter	Symbol	Value	Unit	
Repetitive peak reverse voltage	V_{RRM}	1200	V	
<i>T</i> _C ≥ 25°C	- KKW	1200		
Continuous forward current for R _{th(j-c,max)}				
$T_{\rm C} = 168^{\circ} \rm C, D=1$	 I _F	2.0	А	
$T_c = 135^{\circ}C, D=1$	/F	5.7	A	
$T_{\rm C} = 25^{\circ}{\rm C}, {\rm D}{=}1$		11.8		
Surge repetitive forward current, sine halfwave ¹				
T_{C} =25°C, t_{p} =10ms	$I_{F,RM}$	8	Α	
$T_c=100$ °C, $t_p=10$ ms		6		
Surge non-repetitive forward current, sine halfwave				
T_{C} =25°C, t_{p} =10ms	$I_{F,SM}$	37	Α	
$T_c=150$ °C, $t_p=10$ ms		31		
Non-repetitive peak forward current		344	А	
$T_{\rm C} = 25^{\circ}{\rm C}, t_{\rm p} = 10 \ \mu{\rm s}$	$I_{F,max}$	344	A	
i²t value				
$T_{\rm C} = 25^{\circ}{\rm C}, t_{\rm p} = 10 \text{ ms}$	∫i²dt	7.0	A ² s	
$T_{\rm C} = 150$ °C, $t_{\rm p} = 10$ ms		4.9		
Diode dv/dt ruggedness	du/d+	150	Mas	
V _R =0960 V	dv/dt	150	V/ns	
Power dissipation for R _{th(j-c,max)}		75	147	
T _C = 25°C	P_{tot}	75	W	

¹ Not subject to production test. The test was performed with 20000 pulses (two consecutive half-wave rectified sines with 10 ms period).

Maximum ratings

Operating temperature	T_{vj}	-55175	°C
Storage temperature	T_{stg}	-55150	°C
Soldering temperature, reflow soldering (MSL1 according to JEDEC J-STD-020)	T_{sold}	260	°C

Thermal resistances

2 Thermal resistances

Davamatav		Conditions	Value			
Parameter	Symbol		min.	typ.	max.	Unit
Characteristic						
Diode thermal resistance, junction – case	$R_{th(j-c)}$		-	1.5	2	K/W
Thermal resistance, junction – ambient	$R_{\text{th(j-a)}}$	Leaded	-	-	62	K/W

Electrical Characteristics

3 Electrical Characteristics

Static Characteristics, at $T_{\nu j}$ =25°C, unless otherwise specified

Parameter	Symbol	Conditions	Value			Unit
raiailietei			min.	typ.	max.	Oilit
DC blocking voltage	$V_{ m DC}$	$T_{vj} = 25$ °C, $I_R = 50 \mu A$	1200	-	-	V
Diode forward voltage	V_{F}	I _F = 2A, T _{vj} =25°C	-	1.4	1.65	V
		$I_F = 2A, T_{Vj} = 25$ °C $I_F = 2A, T_{Vj} = 150$ °C	-	1.7	-	
Reverse current	I _R	V _R =1200V, T _j =25°C	-	1.2	18	μА
		V _R =1200V, T _j =150°C	-	6	-	

Dynamic Characteristics, at $T_{\nu j}$ =25°C, unless otherwise specified

Parameter	Symbol	Conditions	Value			Unit
raiailletei			min.	typ.	max.	Oilit
Total capacitive charge		$V_R = 800V, T_{vj} = 150$ °C				
	Qc	$Q_C = \int_0^{V_R} C(V) dV$	-	14	-	nC
		<i>V</i> _R =1 V, <i>f</i> =1 MHz	-	182	-	
Total Capacitance	С	V _R =400 V, <i>f</i> =1 MHz	-	13	-	pF
		V _R =800 V, <i>f</i> =1 MHz	-	10	-	_

2021-07-14

Electrical Characteristics Diagrams

4 Electrical Characteristics Diagrams

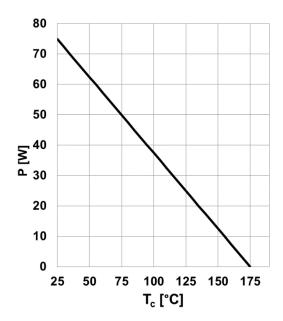


Figure 1. Power dissipation as function of case temperature, $P_{tot}=f(T_c)$, $R_{th(j-c),max}$

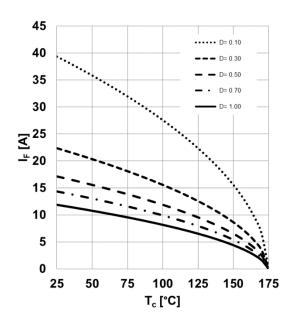


Figure 2. Diode forward current as function of temperature, parameter: $T_{vj} \le 175^{\circ}\text{C}$, $R_{\text{th}(j-c),\text{max}}$, D = duty cycle, V_{th} , R_{diff} @ $T_{vj} = 175^{\circ}\text{C}$

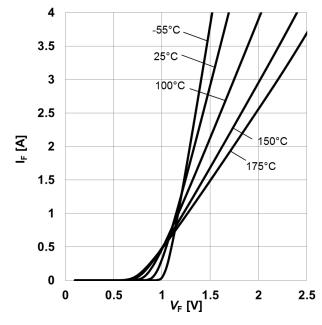


Figure 3. Typical forward characteristics, $I_F = f(V_F)$, $t_P = 10 \mu s$, parameter: $T_{\nu j}$

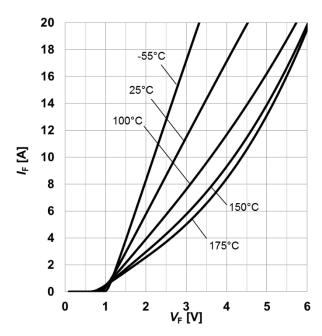


Figure 4. Typical forward characteristics in surge current, $I_F=f(V_F)$, $I_p=10 \mu s$, parameter: T_{vj}

SiC Diode

Electrical Characteristics Diagrams

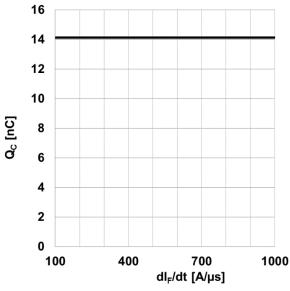


Figure 5. Typical capacitive charge as function of current slope, $Q_c=f(dIF/dt)$, $T_{v}=150^{\circ}C$

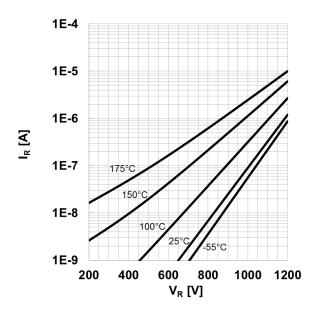


Figure 6. Typical reverse characteristics, $I_R=f(V_R)$, parameter: T_{v_j}

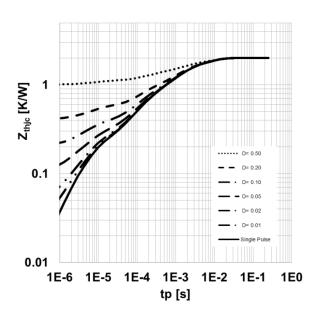


Figure 7. Max. transient thermal impedance, $Z_{th,j-c}=f(t_P)$, parameter: $D=t_P/T$

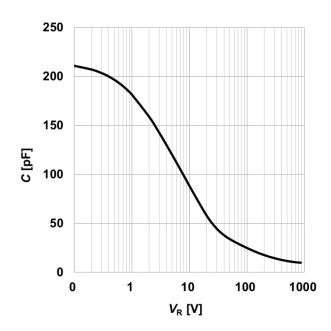
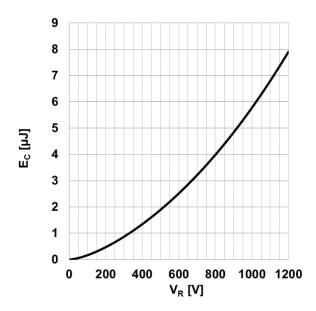
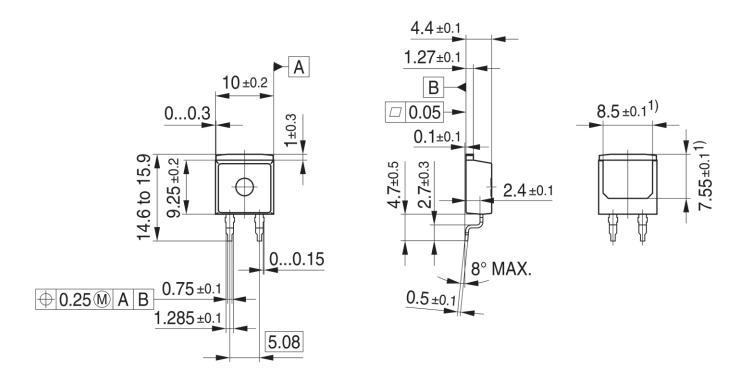


Figure 8. Typical capacitance as function of reverse voltage, $C=f(V_R)$; $T_{\nu/}=25^{\circ}C$; f=1 MHz

Electrical Characteristics Diagrams




Figure 9. Typical capacitively stored energy as function of reverse voltage, $E_c=f(V_R)$

Package Drawing

5 Package Drawing

PG-TO263-2

1) Typical

Metal surface min. X = 7.25, y = 6.9

All metal surfaces: tin plated, except area of cut

All dimensions do not include mold flash or protrusions
All dimensions are in units mm
The drawings is in complicance with ISO 128-30, Projection Method 1 [←♦]

SiC-Diode

Revision history

Revision history

Document version	Date of release	Description of changes
V 2.0	2019-10-28	Final Datasheet
V 2.1	2021-07-14	Increased dv/dt ruggedness

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-07-14
Published by
Infineon Technologies AG
81726 München, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

n.a.

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

MA4E2039 D1FH3-5063 MBR0530L-TP MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30

BAS16E6433HTMA1 BAT 54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T

SK32A-LTP SK34B-TP SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP SK33B-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF ACDBA1200-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF CDBQC0240LR-HF ACDBA260LR-HF

ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G NTE573 NTE6081 SB560 PMAD1108-LF