# High Current PN Half Bridge with Integrated Driver 

IFX007T<br>Industrial \& Multi Purpose NovalithlC ${ }^{\text {tm }}$



## 1 Overview

## Quality Requirement Category: Industrial

## Features

- Path resistance of max. $12.8 \mathrm{~m} \Omega$ @ $25^{\circ} \mathrm{C}$ (typ. $10.0 \mathrm{~m} \Omega$ @ $25^{\circ} \mathrm{C}$ ) High side: max. $6.5 \mathrm{~m} \Omega @ 25^{\circ} \mathrm{C}\left(\right.$ typ. $5.3 \mathrm{~m} \Omega @ 25^{\circ} \mathrm{C}$ )
 Low side: max. $6.3 \mathrm{~m} \Omega$ @ $25^{\circ} \mathrm{C}$ (typ. $4.7 \mathrm{~m} \Omega @ 25^{\circ} \mathrm{C}$ )
- Enhanced switching speed for reduced switching losses
- Capable for high PWM frequency combined with active freewheeling
- Switched mode current limitation for reduced power dissipation in overcurrent
- Current limitation level of 55 A min.
- Status flag diagnosis with current sense capability
- Overtemperature shutdown with latch behavior
- Undervoltage shutdown
- Driver circuit with logic level inputs
- Adjustable slew rates for optimized EMI
- Operation up to 40 V
- Green Product (RoHS compliant)
- JESD47I Qualified


## Description

The IFX007T is an integrated high current half bridge for motor drive applications. It is part of the Industrial \& Multi Purpose NovalithICTM family containing one p-channel high-side MOSFET and one n-channel low-side MOSFET with an integrated driver IC in one package. Due to the p-channel high-side switch the need for a charge pump is eliminated thus minimizing EMI. Interfacing to a microcontroller is made easy by the integrated driver IC which features logic level inputs, diagnosis with current sense, slew rate adjustment, dead time generation and protection against overtemperature, undervoltage, overcurrent and short circuit.
The IFX007T provides a cost optimized solution for protected high current PWM motor drives with very low board space consumption. IFX007T

Overview

| Type | Package | Marking |
| :--- | :--- | :--- |
| IFX007T | PG-TO263-7-1 | IFX007T |

# High Current PN Half Bridge with Integrated Driver IFX007T 

## Table of Contents

1 Overview ..... 1
2 Block diagram ..... 4
2.1 Block diagram ..... 4
2.2 Terms ..... 4
3 Pin configuration ..... 5
3.1 Pin assignment ..... 5
3.2 Pin definitions and functions ..... 5
4 General product characteristics ..... 6
4.1 Absolute maximum ratings ..... 6
4.2 Functional range ..... 7
4.3 Thermal resistance ..... 7
5 Block description and characteristics ..... 8
5.1 Supply characteristics ..... 8
5.2 Power stages ..... 9
5.2.1 Power stages - static characteristics ..... 10
5.2.2 Switching times ..... 11
5.2.3 Power stages - dynamic characteristics ..... 12
5.3 Protection functions ..... 12
5.3.1 Undervoltage shutdown ..... 12
5.3.2 Overtemperature protection ..... 13
5.3.3 Current limitation ..... 13
5.3.4 Short circuit protection ..... 15
5.3.5 Electrical characteristics - protection functions ..... 15
5.4 Control and diagnostics ..... 16
5.4.1 Input circuit ..... 16
5.4.2 Dead time generation ..... 16
5.4.3 Adjustable slew rate ..... 16
5.4.4 Status flag diagnosis with current sense capability ..... 16
5.4.5 Truth table ..... 18
5.4.6 Electrical characteristics - control and diagnostics ..... 18
6 Application information ..... 21
6.1 Application circuit ..... 21
6.2 Layout considerations ..... 21
6.3 PWM control ..... 22
7 Package Outlines ..... 23
8 Revision History ..... 24

# High Current PN Half Bridge with Integrated Driver <br> IFX007T 

## Block diagram

## 2 Block diagram

The IFX007T is part of the Industrial \& Multi Purpose NovalithIC ${ }^{\text {TM }}$ family containing three separate chips in one package: One p-channel high-side MOSFET and one n-channel low-side MOSFET together with a driver IC, forming an integrated high current half-bridge. All three chips are mounted on one common lead frame, using the chip-on chip and chip-by-chip technology. The power switches utilize vertical MOS technologies to ensure optimum on state resistance. Due to the p-channel high-side switch the need for a charge pump is eliminated thus minimizing EMI. Interfacing to a microcontroller is made easy by the integrated driver IC which features logic level inputs, diagnosis with current sense, slew rate adjustment, dead time generation and protection against overtemperature, undervoltage, overcurrent and short circuit. The IFX007T can be combined with other IFX007Ts to form a H -bridge or a3-phase drive configuration.

### 2.1 Block diagram



Figure 1 Block diagram

### 2.2 Terms

Following figure shows the terms used in this data sheet.


Figure 2 Terms

High Current PN Half Bridge with Integrated Driver

## IFX007T

Pin configuration

## 3 Pin configuration

### 3.1 Pin assignment



Figure 3 Pin assignment IFX007T (top view)

### 3.2 Pin definitions and functions

Table 1 Pin definitions and functions

| Pin | Symbol | I/O | Function |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | GND | - | Ground |
| 2 | IN | I | Input <br> Defines whether high - or low-side switch is activated |
| 3 | INH | I | Inhibit <br> When set to low device goes in sleep mode |
| $\mathbf{4 , 8}$ | OUT | $\mathbf{0}$ | Power output of the bridge |
| 5 | SR | I | Slew Rate <br> The slew rate of the power switches can be adjusted by connecting <br> a resistor between SR and GND |
| 6 | IS | O | Current Sense and Diagnostics |
| $\mathbf{7}$ | VS | - | Supply |

Bold type: pin needs power wiring

# High Current PN Half Bridge with Integrated Driver <br> IFX007T 

## General product characteristics

## 4 General product characteristics

The device is intended to be used in an industrial or consumer environment. The circumstances, how the device environment must look like are described in this chapter.

### 4.1 Absolute maximum ratings

Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2 Absolute maximum ratings ${ }^{1)}$
$T_{\mathrm{j}}=25^{\circ} \mathrm{C}$; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Parameter | Symbol | Values |  | Unit | Note or <br> Test Condition | Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Min. | Typ. | Max. |  |  |

## Voltages

| Supply voltage | $V_{\text {S }}$ | -0.3 | - | 40 | V | - | P_4.1.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drain-source voltage high side | $V_{\text {DS(HS) }}$ | -40 | - | - | V | $T_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$ | P_4.1.2 |
|  |  | -38 | - | - | V | $T_{\mathrm{j}}<25^{\circ} \mathrm{C}$ |  |
| Drain-source voltage low side | $V_{\text {DS(LS) }}$ | - | - | 40 | V | $T_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$ | P_4.1.3 |
|  |  | - | - | 38 | V | $T_{\mathrm{j}}<25^{\circ} \mathrm{C}$ |  |
| Logic input voltage | $\begin{array}{\|l\|} \hline V_{\mathrm{IN}} \\ V_{\mathrm{INH}} \\ \hline \end{array}$ | -0.3 | - | 5.3 | V | - | P_4.1.4 |
| Voltage at SR pin | $V_{\text {SR }}$ | -0.3 | - | 1.0 | V | - | P_4.1.5 |
| Voltage between VS and IS pin | $V_{\text {S }}-V_{\text {IS }}$ | -0.3 | - | 40 | V | - | P_4.1.6 |
| Voltage at IS pin | $V_{\text {IS }}$ | -20 | - | 40 | V | - | P_4.1.7 |
| Voltage transient between VS and GND pin $^{2)}$ | $d V_{S}$ | -1 | - | 1 | V | Transient fall/rise time: $t_{\text {trans }}>85 \mathrm{~ns}$. | P_4.1.8 |

## Currents

| HS/LS continuous drain current | $I_{\mathrm{D}(\mathrm{HS})}$ <br> $I_{\mathrm{D}(\mathrm{LS})}$ | -50 | - | 50 | A | switch active | P_4.1.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HS/LS pulsed drain current ${ }^{3)}$ | $I_{\mathrm{D}(\mathrm{HS})}$ <br> $I_{\mathrm{D}(\mathrm{LS})}$ | -117 | - | 117 | A | $t_{\text {pulse }}=10 \mathrm{~ms}$ <br> single pulse | P_4.1.10 |

## Temperatures

| Junction temperature | $T_{\mathrm{j}}$ | -40 | - | 150 | ${ }^{\circ} \mathrm{C}$ | - | P_4.1.11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Storage temperature | $T_{\text {stg }}$ | -55 | - | 150 | ${ }^{\circ} \mathrm{C}$ | - | P_4.1.12 |

ESD susceptibility

| ESD resistivity HBM | $V_{\text {ESD }}$ |  |  |  | kV | HBM $^{4)}$ | P_4.1.13 $^{\text {IN, INH, SR, IS }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OUT, GND, VS |  | -2 | - | 2 |  |  |  |

1) Not subject to production test, specified by design.
2) "Under Voltage Shut Down" shall not be triggered.
3) Maximum reachable current may be smaller depending on current limitation level.
4) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 ( $1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$ ).

## High Current PN Half Bridge with Integrated Driver IFX007T

## General product characteristics

Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

### 4.2 Functional range

The parameters of the functional range are listed in the following table:

Table 3 Functional range

| Parameter | Symbol | Values |  |  | Unit | Note or Test Condition | Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |  |  |
| Supply voltage range for normal operation | $V_{\text {S(nor) }}$ | 8 | - | 40 | V | $T_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$ | P_4.2.1 |
|  |  | 8 | - | 38 | V | $T_{\mathrm{j}}<25^{\circ} \mathrm{C}$ |  |
| Junction temperature | $T_{\mathrm{j}}$ | -40 | - | 150 | ${ }^{\circ} \mathrm{C}$ | - | P_4.2.2 |

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

### 4.3 Thermal resistance

This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org

Table 4 Thermal resistance

| Parameter | Symbol | Values |  |  | Unit | Note or |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | Min. | Typ. | Max. |  |

1) Not subject to production test, specified by design.
2) Specified $R_{\text {thJA }}$ value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2 s 2 p board; The Product (Chip+Package) was simulated on a $76.2 \times 114.3 \times 1.5 \mathrm{~mm}$ board with 2 inner copper layers ( $2 \times 70 \mu \mathrm{~m} \mathrm{Cu}, 2 \times 35 \mu \mathrm{~m} \mathrm{Cu}$ ). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. IFX007T

## Block description and characteristics

## 5 Block description and characteristics

### 5.1 Supply characteristics

Table 5 Supply characteristics
$V_{\mathrm{s}}=24 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}, I_{\mathrm{L}}=0 \mathrm{~A}$,
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Parameter | Symbol | Values |  |  | Unit | Note or Test Condition | Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |  |  |
| General |  |  |  |  |  |  |  |
| Supply current | $I_{\text {VS(on) }}$ | - | 2.3 | 2.8 | mA | $\begin{aligned} & \hline V_{\text {INH }}=5 \mathrm{~V} \\ & V_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & R_{\mathrm{SR}}=0 \Omega \\ & \mathrm{DC}-\text { mode } \\ & \text { normal operation } \\ & \text { (no fault condition) } \end{aligned}$ | P_5.1.1 |
| Quiescent current | $I_{\text {VS(off) }}$ | - | 7 | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {INH }}=0 \mathrm{~V} \\ & V_{\text {IN }}=0 \mathrm{~V} \text { or } 5 \mathrm{~V}^{1)} \end{aligned}$ | P_5.1.2 |

1) Not subject to production test, specified by design.


Figure 4 Typical quiescent current vs. junction temperature

IFX007T

## Block description and characteristics

## $5.2 \quad$ Power stages

The power stages of the IFX007T consist of a p-channel vertical DMOS transistor for the high-side switch and an n-channel vertical DMOS transistor for the low-side switch. All protection and diagnostic functions are located in a separate top chip. Both switches allow active freewheeling and thus minimizing power dissipation during PWM control.

The on state resistance $R_{\mathrm{ON}}$ is dependent on the supply voltage $V_{\mathrm{S}}$ as well as on the junction temperature $T_{\mathrm{j}}$. The typical on state resistance characteristics are shown in Figure 5 and Figure 6.


Figure $5 \quad$ Typical ON-state resistance vs. supply voltage IFX007T

## Block description and characteristics



Figure $6 \quad$ Typical 0 N -state resistance vs. junction temperature; $V_{\mathrm{S}}=13.5 \mathrm{~V} ; I_{\mathrm{D}}=9 \mathrm{~A}$

### 5.2.1 Power stages - static characteristics

Table 6 Power stages - static characteristics
$V_{\mathrm{S}}=24 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Parameter | Symbol | Values |  | Unit | Note or <br> Test Condition | Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Min. | Typ. | Max. |  |  |

High-side switch - static characteristics

| ON state high-side resistance | $\mathrm{R}_{\text {ON(HS) }}$ | - | 5.3 | 6.5 | $\mathrm{m} \Omega$ | $l_{\text {OUT }}=9 \mathrm{~A} ; V_{\text {S }}=13.5 \mathrm{~V}$ | P_5.2.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Leakage current high side | $I_{\text {L(LKHS) }}$ | - | - | 1 | $\mu \mathrm{A}$ | $V_{\text {INH }}=0 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ | P_5.2.2 |
| Reverse diode forward-voltage high side ${ }^{1 \text { 1 }}$ | $V_{\text {DS(HS) }}$ | - | 0.8 | 0.9 | V | $I_{\text {OUT }}=-9 \mathrm{~A}$ | P_5.2.3 |

## Low-side switch - static characteristics

| ON-state low-side resistance | $R_{\text {ON(LS) }}$ | - | 4.7 | 6.3 | $\mathrm{~m} \Omega$ | $I_{\text {OUT }}=-9 \mathrm{~A} ; V_{\mathrm{S}}=13.5 \mathrm{~V}$ | $\mathrm{P}_{2} 5.2 .4$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Leakage current low side | $I_{\mathrm{LLLKLS})}$ | - | - | 1 | $\mu \mathrm{~A}$ | $V_{\text {INH }}=0 \mathrm{~V} ; V_{\text {OUT }}=V_{\mathrm{S}}$ | $\mathrm{P}_{-} 5.2 .5$ |
| Reverse diode forward-voltage <br> low side | $-V_{\text {DS }(\mathrm{LS})}$ | - | 0.8 | 0.9 | V | $I_{\text {OUT }}=9 \mathrm{~A}$ | $\mathrm{P}_{-} 5.2 .6$ |

1) Due to active freewheeling, diode is conducting only for a few $\mu \mathrm{s}$, depending on $R_{\mathrm{SR}}$. IFX007T

## Block description and characteristics

### 5.2.2 Switching times



Figure 7 Definition of switching times high side ( $R_{\text {load }}$ to GND)


Figure 8 Definition of switching times low side ( $R_{\text {load }}$ to $V_{\mathrm{s}}$ )
Due to the timing differences for the rising and the falling edge there will be a slight difference between the length of the input pulse and the length of the output pulse. It can be calculated using the following formulas:

- $\Delta t_{\mathrm{HS}}=\left(t_{\mathrm{dr}(\mathrm{HS})}+0.5 t_{\mathrm{r}(\mathrm{HS})}\right)-\left(t_{\mathrm{df}(\mathrm{HS})}+0.5 t_{\mathrm{f}(\mathrm{HS})}\right)$
- $\Delta t_{\mathrm{LS}}=\left(t_{\mathrm{dff}(\mathrm{S})}+0.5 t_{\mathrm{f}(\mathrm{LS})}\right)-\left(t_{\mathrm{dr}(\mathrm{LS})}+0.5 t_{\mathrm{r}(\mathrm{LS})}\right)$.


# High Current PN Half Bridge with Integrated Driver <br> IFX007T 

Block description and characteristics

### 5.2.3 Power stages - dynamic characteristics

The slew rate resistor at the SR-pin shall not exceed the max. slew rate resistor value of $R_{\mathrm{SR}} \leq 51 \mathrm{k} \Omega$.

## Table 7 Power stages - dynamic characteristics

$V_{\mathrm{S}}=24 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}, R_{\text {load }}=4 \Omega$, single pulse, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Parameter | Symbol | Values |  |  | Unit | Note or Test Condition | Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |  |  |
| High-side switch dynamic characteristics |  |  |  |  |  |  |  |
| Rise-time of HS | $t_{\text {r(HS) }}$ | $\begin{aligned} & 0.05 \\ & 0.22 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.25 \\ 1.3 \\ \hline \end{array}$ | $\begin{aligned} & 0.75 \\ & 4.7 \end{aligned}$ | $\mu \mathrm{s}$ | $\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$ | P_5.2.7 |
| Switch-ON delay time HS | $t_{\mathrm{dr}(\mathrm{HS})}$ | $\begin{aligned} & 1.5 \\ & 2 \end{aligned}$ | $\begin{aligned} & 3.4 \\ & 15 \end{aligned}$ | $\begin{aligned} & 4.6 \\ & 31 \end{aligned}$ | $\mu \mathrm{s}$ | $\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$ | P_5.2.8 |
| Fall-time of HS | $t_{f(H S)}$ | $\begin{aligned} & 0.05 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 1.3 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 4.5 \end{aligned}$ | $\mu \mathrm{s}$ | $\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$ | P_5.2.9 |
| Switch-OFF delay time HS | $t_{\text {df(HS) }}$ | $\begin{aligned} & 0.8 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 2.4 \\ & 9 \end{aligned}$ | $\begin{aligned} & 4.1 \\ & 21 \end{aligned}$ | $\mu s$ | $\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$ | P_5.2.10 |
| Low-side switch dynamic characteristics |  |  |  |  |  |  |  |
| Rise-time of LS | $t_{\text {r(LS) }}$ | $\begin{array}{\|l\|} \hline 0.05 \\ 0.22 \\ \hline \end{array}$ | $\begin{aligned} & 0.25 \\ & 1.3 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 4.5 \end{aligned}$ | $\mu \mathrm{s}$ | $\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$ | P_5.2.11 |
| Switch-OFF delay time LS | $t_{\text {dr }(\text { LS })}$ | $\begin{aligned} & 0.2 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 7 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 16 \end{aligned}$ | $\mu \mathrm{s}$ | $\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$ | P_5.2.12 |
| Fall-time of LS | $t_{f(L S)}$ | $\begin{array}{\|l\|} \hline 0.025 \\ 0.18 \\ \hline \end{array}$ | $\begin{aligned} & 0.25 \\ & 1.3 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.7 \\ 4.5 \\ \hline \end{array}$ | $\mu \mathrm{s}$ | $\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$ | P_5.2.13 |
| Switch-ON delay time LS | $t_{\text {df(LS) }}$ | $\begin{aligned} & 1.6 \\ & 2.0 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 4.2 \\ 16 \\ \hline \end{array}$ | $\begin{aligned} & 5.9 \\ & 36 \end{aligned}$ | $\mu \mathrm{s}$ | $\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$ | P_5.2.14 |

### 5.3 Protection functions

The device provides integrated protection functions. These are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not to be used for continuous or repetitive operation, with the exception of the current limitation (Chapter 5.3.3). In case of overtemperature the IFX007T will apply the slew rate determined by the connected slew rate resistor. In current limitation mode the highest slew rate possible will be applied independent of the connected slew rate resistor. Overtemperature and overcurrent are indicated by a fault current $I_{\text {IS(LIM) }}$ at the IS pin as described in the paragraph "Status flag diagnosis with current sense capability" on Page 16 and Figure 12.

### 5.3.1 Undervoltage shutdown

To avoid uncontrolled motion of the driven motor at low voltages the device shuts off (output is tri-state), if the supply voltage drops below the switch-off voltage $V_{\text {Uv(OFF) }}$. The IC becomes active again with a hysteresis $V_{\mathrm{UV}(\mathrm{HY})}$ if the supply voltage rises above the switch-on voltage $V_{\mathrm{UV}(\mathrm{ON})}$. IFX007T

## Block description and characteristics

### 5.3.2 Overtemperature protection

The IFX007T is protected against overtemperature by an integrated temperature sensor. Overtemperature leads to a shutdown of both output stages. This state is latched until the device is reset by a low signal with a minimum length of $t_{\text {reset }}$ at the INH pin, provided that its temperature has decreased at least the thermal hysteresis $\Delta T$ in the meantime.
Repetitive use of the overtemperature protection impacts lifetime.

### 5.3.3 Current limitation

The current in the bridge is measured in both switches. As soon as the current in forward direction in one switch (high side or low side) is reaching the limit $I_{\text {CLx }}$, this switch is deactivated and the other switch is activated for $t_{\text {cLs }}$. During that time all changes at the IN pin are ignored. However, the INH pin can still be used to switch both MOSFETs off. After $t_{\text {cLs }}$ the switches return to their initial setting. The error signal at the IS pin is reset after $2^{*} t_{\text {cls }}$. Unintentional triggering of the current limitation by short current spikes (e.g. inflicted by EMI coming from the motor) is suppressed by internal filter circuitry. Due to thresholds and reaction delay times of the filter circuitry the effective current limitation level / cLx depends on the slew rate of the load current $d I / d t$ as shown in Figure 10.


Figure 9 Timing diagram current limitation (inductive load)

IFX007T

## Block description and characteristics



Figure 10 Typical current limitation detection level vs. current slew rate $\mathrm{d} / \mathrm{L} / \mathrm{d} t$


Figure 11 Typical current limitation detection levels vs. supply voltage

In combination with a typical inductive load, such as a motor, this results in a switched mode current limitation. This method of limiting the current has the advantage of greatly reduced power dissipation in the IFX007T compared to driving the MOSFET in linear mode. Therefore it is possible to use the current limitation

# High Current PN Half Bridge with Integrated Driver IFX007T 

## Block description and characteristics

for a short time without exceeding the maximum allowed junction temperature (e.g. for limiting the inrush current during motor start up). However, the regular use of the current limitation is allowed as long as the specified maximum junction temperature is not exceeded. Exceeding this temperature can reduce the lifetime of the device.

### 5.3.4 Short circuit protection

The device provides embedded protection functions against

- output short circuit to ground
- output short circuit to supply voltage
- short circuit of load

The short circuit protection is realized by the previously described current limitation in combination with the overtemperature shutdown of the device.

### 5.3.5 Electrical characteristics - protection functions

## Table 8 Electrical characteristics-protection functions

$V_{\mathrm{S}}=24 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Parameter | Symbol | Values |  |  | Unit | Note or Test Condition | Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |  |  |
| Undervoltage shutdown |  |  |  |  |  |  |  |
| Switch-ON voltage | $V_{\text {UV(ON) }}$ | - | - | 5.0 | V | $V_{\text {S }}$ increasing | P_5.3.1 |
| Switch-OFF voltage ${ }^{1)}$ | $V_{\text {UV(OFF) }}$ | 3.3 | - | 4.7 | V | $V_{\text {S }}$ decreasing, INH = 1 | P_5.3.2 |
| ON/OFF hysteresis | $V_{\text {UV(HY) }}$ | - | 0.3 | - | V | 2) | P_5.3.3 |

## Current limitation

| Current limitation detection <br> level HS/LS | $I_{\text {CLH0 }}$ <br> $I_{\text {CLLO }}$ | 55 | 77 | 98 | A | $V_{\mathrm{S}}=13.5 \mathrm{~V}$ | P_5.3.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Current limitation timing

| Shut OFF time for HS and LS | $t_{\text {CLS }}$ | 70 | 115 | 210 | $\mu \mathrm{S}$ | 2) | P_5.3.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thermal shutdown |  |  |  |  |  |  |  |
| Thermal shutdown junction temperature | $T_{\text {jSD }}$ | 155 | 175 | 200 | ${ }^{\circ} \mathrm{C}$ | - | P_5.3.6 |
| Thermal switch-ON junction temperature | $T_{\text {jso }}$ | 150 | - | 190 | ${ }^{\circ} \mathrm{C}$ | - | P_5.3.7 |
| Thermal hysteresis | DT | - | 7 | - | K | 2) | P_5.3.8 |
| Reset pulse at INH Pin (INH low) | $t_{\text {reset }}$ | 4 | - | - | $\mu \mathrm{s}$ | 2) | P_5.3.9 |

1) With decreasing $V_{s}<5.5 \mathrm{~V}$ activation of the current limitation mode may occur before undervoltage shutdown.
2) Not subject to production test, specified by design.

# High Current PN Half Bridge with Integrated Driver <br> IFX007T 

Block description and characteristics

### 5.4 Control and diagnostics

### 5.4.1 Input circuit

The control inputs IN and INH consist of TTL/CMOS compatible schmitt triggers with hysteresis which control the integrated gate drivers for the MOSFETs. Setting the INH pin to high enables the device. In this condition one of the two power switches is switched on depending on the status of the IN pin. To deactivate both switches, the INH pin has to be set to low. No external driver is needed. The IFX007T can be interfaced directly to a microcontroller, as long as the maximum ratings in Chapter 4.1 are not exceeded.

### 5.4.2 Dead time generation

In bridge applications it has to be assured that the high-side and low-side MOSFET are not conducting at the same time, connecting directly the battery voltage to GND. This is assured by a circuit in the driver IC, generating a so called dead time between switching off one MOSFET and switching on the other. The dead time generated in the driver IC is automatically adjusted to the selected slew rate.

### 5.4.3 Adjustable slew rate

In order to optimize electromagnetic emission, the switching speed of the MOSFETs is adjustable by an external resistor. The slew rate pin SR allows the user to optimize the balance between emission and power dissipation within his own application by connecting an external resistor $R_{\mathrm{SR}}$ to GND.

### 5.4.4 Status flag diagnosis with current sense capability

The sense pin IS is used as a combined current sense and error flag output.
In normal operation (current sense mode), a current source is connected to the status pin, which delivers a current proportional to the forward load current flowing through the active high-side switch. The sense current can be calculated out of the load current by the following equation:
$I_{\mathrm{IS}}=\frac{1}{\mathrm{dk}_{\mathrm{ILIS}}} \cdot I_{\mathrm{L}}+I_{\mathrm{IS}(\text { offset })}$
The other way around, the load current can be calculated out of the sense current by following equation:
$I_{\mathrm{L}}=\mathrm{dk}_{\mathrm{ILIS}} \cdot\left(I_{\mathrm{IS}}-I_{\mathrm{IS}(\mathrm{offset})}\right)$
The differential current sense ratio $\mathrm{d} k_{\mathrm{i} \text { iis }}$ is defined by:
$\mathrm{d} k_{\mathrm{ILIS}}=\frac{I_{\mathrm{L} 2}-I_{\mathrm{L} 1}}{I_{\mathrm{IS}}\left(I_{\mathrm{L} 2}\right)-I_{\mathrm{IS}}\left(I_{\mathrm{L} 1}\right)}$
If the high side drain current is zero $\left(l_{\mathrm{SD}(\mathrm{HS})}=0 \mathrm{~A}\right)$ the offset current $I_{\mathrm{IS}}=I_{\mathrm{IS} \text { (offset) }}$ still will be driven.
The external resistor $R_{\text {IS }}$ determines the voltage per IS output current. The voltage can be calculated by $V_{\text {IS }}=R_{\text {IS }} \cdot I_{\text {IS }}$.
In case of a fault condition the status output is connected to a current source which is independent of the load current and provides $I_{\mathrm{IS}(\mathrm{lim})}$. The maximum voltage at the IS pin is determined by the choice of the external resistor and the supply voltage. In case of current limitation the $I_{\mathrm{IS}(\mathrm{lim})}$ is activated for $2^{*} t_{\mathrm{CLS}}$. IFX007T

## Block description and characteristics



Figure 12 Sense current and fault current


Figure 13 Sense current vs. load current

# High Current PN Half Bridge with Integrated Driver <br> IFX007T 

Block description and characteristics

### 5.4.5 Truth table

Table 9 Truth table

| Device State | Inputs |  |  | Outputs |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | INH | IN | HSS | LSS | IS |  |
| Normal operation | 0 | X | OFF | OFF | 0 | Stand-by mode |
|  | 1 | 0 | OFF | ON | $I_{\text {IS(offset) }}$ | LSS active |
|  | 1 | 1 | ON | OFF | CS | HSS active |
| Undervoltage (UV) | X | X | OFF | OFF | 0 | UV lockout, reset |
| Overtemperature (OT) <br> or short circuit of HSS or LSS | 0 | X | OFF | OFF | 0 | Stand-by mode, reset of latch |
|  | 1 | X | OFF | OFF | 1 | Shutdown with latch, error detected |

1) Will return to normal operation after $t_{\mathrm{CLS}}$; Error signal is reset after $2^{*} t_{\mathrm{CLS}}$ (see Chapter 5.3.3)

Table 10

| Inputs | Switches | Current sense $/$ status flag IS |
| :--- | :--- | :--- |
| $0=$ Logic LOW | OFF = switched off | $I_{\text {IS(offset) }}=$ Current sense - Offset (for <br> conditions see table: Current <br> sense) |
| $1=$ Logic HIGH | ON = switched on | CS = Current sense - high side (for <br> conditions see table: Current <br> sense) |
| $X=0$ or 1 |  | $1=$ Logic HIGH (error) |
|  | $0=$ No output |  |

### 5.4.6 Electrical characteristics - control and diagnostics

## Table 11 Electrical characteristics - control and diagnostics

$V_{\mathrm{S}}=24 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Parameter | Symbol | Values |  |  | Unit | Note or <br> Test Condition | Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |  |  |
| Control inputs (IN and INH) |  |  |  |  |  |  |  |
| High level voltage INH, IN | $\begin{aligned} & V_{\operatorname{INH}(\mathrm{H})} \\ & V_{\mathrm{IN}(\mathrm{H})} \end{aligned}$ | - | 1.6 | 2 | V | - | P_5.4.1 |
| Low level voltage INH, IN | $\begin{aligned} & V_{\mathrm{INH}(\mathrm{~L})} \\ & V_{\mathrm{IN}(\mathrm{~L})} \end{aligned}$ | 1.1 | 1.3 | - | V | - | P_5.4.2 |
| Input voltage hysteresis | $V_{\text {INHHY }}$ <br> $V_{\text {INHY }}$ | - | 300 | - | mV | 1) | P_5.4.3 |
| Input current high level | $\begin{aligned} & I_{\mathrm{INH}(\mathrm{H})} \\ & I_{\mathrm{IN}(\mathrm{H})} \end{aligned}$ | 15 | 30 | 100 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {INH }}=5.3 \mathrm{~V}$ | P_5.4.4 |

High Current PN Half Bridge with Integrated Driver

IFX007T

## Block description and characteristics

Table 11 Electrical characteristics - control and diagnostics (cont'd)
$V_{\mathrm{S}}=24 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Parameter | Symbol | Values |  |  | Unit | Note or Test Condition | Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |  |  |
| Input current low level | $I_{\text {INH (L) }}$ <br> $I_{\mathrm{IN}(\mathrm{L})}$ | 15 | 25 | 50 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {INH }}=0.4 \mathrm{~V}$ | P_5.4.5 |
| Current sense |  |  |  |  |  |  |  |
| Differential current sense ratio in static on-condition $d k_{\text {LISS }}=\mathrm{d} l_{\mathrm{L}} / \mathrm{d} /_{\mathrm{IS}}$ | $d k_{\text {ILIS }}$ | 15 | 19.5 | 24 | $10^{3}$ | $\begin{aligned} & V_{\mathrm{S}}=13.5 \mathrm{~V} \\ & R_{\mathrm{IS}}=1 \mathrm{k} \Omega \\ & I_{\mathrm{L} 1}=10 \mathrm{~A} \\ & l_{\mathrm{L} 2}=40 \mathrm{~A} \end{aligned}$ | P_5.4.6 |
| Maximum analog sense current, Sense current in fault condition | $I_{\text {IS(lim) }}$ | 4.1 | 5 | 6.1 | mA | $\begin{aligned} & V_{\mathrm{S}}=13.5 \mathrm{~V} \\ & R_{\mathrm{IS}}=1 \mathrm{k} \Omega \end{aligned}$ | P_5.4.7 |
| Isense leakage current | $I_{\text {ISL }}$ | - | - | 1 | $\mu \mathrm{A}$ | $V_{\text {INH }}=0 \mathrm{~V}$ | P_5.4.8 |
| Isense offset current | $I_{\text {IS(offset) }}$ | 30 | 170 | 385 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\mathrm{INH}}=5 \mathrm{~V} \\ & I_{\mathrm{SD}(\mathrm{HS})}=0 \mathrm{~A} \end{aligned}$ | P_5.4.9 |

1) Not subject to production test, specified by design.


Figure 14 Typical current sense offset current

High Current PN Half Bridge with Integrated Driver IFX007T

Block description and characteristics


Figure 15 Typical characteristic of the maximum analog sense current in fault condition (Pos. 5.4.7.)

# High Current PN Half Bridge with Integrated Driver <br> IFX007T 

Application information

## 6 Application information

Note: $\quad$ The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

### 6.1 Application circuit



Figure 16 Application circuit: H-bridge with two IFX007T

Note: $\quad$ This is a simplified example of an application circuit. The function must be verified in the real application.

### 6.2 Layout considerations

Due to the fast switching times for high currents, special care has to be taken to the PCB layout. Stray inductances have to be minimized in the power bridge design as it is necessary in all switched high power bridges. The IFX007T has no separate pin for power ground and logic ground. Therefore it is recommended to assure that the offset between the ground connection of the slew rate resistor, the current sense resistor and ground pin of the device (GND / pin 1) is minimized. If the IFX007T is used in a H -bridge or B 6 bridge design, the voltage offset between the GND pins of the different devices should be small as well.
Due to the fast switching behavior of the device in current limitation mode a low ESR electrolytic capacitor $C_{10}$ from VS to GND is necessary. This prevents destructive voltage peaks and drops on VS. This is needed for both PWM and non PWM controlled applications. To assure efficiency of $C_{10}$ and $C_{19} / C_{29}$ the stray inductance must be low. Therefore the capacitors must be placed very close to the device pins. The value of the capacitors must be verified in the real application, taking care for low ripple and transients at the Vs pin of the IFX007T.
The digital inputs need to be protected from excess currents (e.g. caused by induced voltage spikes) by series resistors greater than $7 \mathrm{k} \Omega$.


Figure 17 Application circuit: half-bridge with a IFX007T (load to GND)

Note: $\quad$ This is a simplified example of an application circuit. The function must be verified in the real application.

### 6.3 PWM control

For the selection of the max. PWM frequency the choosen rise/fall-time and the requirements on the duty cycle have to be taken into account. We recommend a PWM-period at least 10 times the rise-time.

Example:
Rise-time $=$ fall-time $=4 \mu$ s.
$\Rightarrow$ T-PWM $=10$ * $4 \mu \mathrm{~s}=40 \mu \mathrm{~s}$.
$\Rightarrow>$ f-PWM $=25 \mathrm{kHz}$.
The min. and max. value of the duty cycle (PWM ON to OFF percentage) is determined by the real fall time plus the real rise time. In this example a duty cycle make sense from approximately $20 \%$ to $80 \%$.
If a wider duty cycle range is needed, the PWM frequency could be decreased and/or the rise/fall-time could be accelerated.

## Package Outlines

## $7 \quad$ Package Outlines



1) Typical

Metal surface min. $X=7.25, Y=6.9$
All metal surfaces tin plated, except area of cut. GPTo9114


Figure 18 PG-TO263-7-1 (Plastic Green Transistor Single Outline Package)

## Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website: IFX007T

Revision History

## 8 Revision History

| Revision | Date | Changes |
| :--- | :--- | :--- |
| Rev. 1.0 | Data Sheet | Initial release. |

## Trademarks of Infineon Technologies AG

 DAVE $^{T M}$, DI-POL ${ }^{T M}$, DirectFET ${ }^{T M}$, DrBlade ${ }^{T M}$, EasyPIM ${ }^{T M}$, EconoBRIDGE ${ }^{T M}$, EconoDUAL ${ }^{T M}$, EconoPACK ${ }^{T M}$, EconoPIM ${ }^{T M}$, EiceDRIVER $^{T M}$, eupec ${ }^{T M}$, FCOS ${ }^{T M}$, GaNpowIR ${ }^{T M}$,
 OptiMOS ${ }^{T M}$, ORIGA ${ }^{T M}$, PowIRaudio ${ }^{\text {TM }}$, PowIRStage ${ }^{\text {TM }}$, PrimePACK ${ }^{T M}$, PrimeSTACK ${ }^{T M}$, PROFET ${ }^{T M}$, PRO-SIL ${ }^{T M}$, RASIC ${ }^{T M}$, REAL3 ${ }^{T M}$, SmartLEWIS ${ }^{T M}$, SOLID FLASH ${ }^{T M}$, SPOC $^{\text {TM }}$, StrongIRFET ${ }^{\text {TM }}$, SupIRBuck ${ }^{\text {TM }}$, TEMPFET ${ }^{\text {TM }}$, TRENCHSTOP $^{\text {TM }}$, TriCore ${ }^{\text {TM }}$, UHVIC $^{\text {TM }}$, XHP $^{\text {TM }}$, XMC $^{\text {TM }}$.

Trademarks updated November 2015

## Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

## IMPORTANT NOTICE

Edition 2018-02-21
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

## WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :

```
00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-
1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-
RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P}\mathrm{ 6131-
220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63
```

