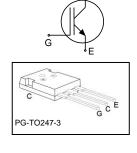


TRENCHSTOP™ Series

Low Loss IGBT: IGBT in TRENCHSTOP™ and Fieldstop technology

Features:


- Very low V_{CE(sat)} 1.5V (typ.)
- Maximum Junction Temperature 175°C
- Short circuit withstand time $5\mu s$
- Designed for : •
 - Frequency Converters
 - Uninterrupted Power Supply
- TRENCHSTOP™ and Fieldstop technology for 600V applications offers : very tight parameter distribution high ruggedness, temperature stable behavior
 - - very high switching speed
- Positive temperature coefficient in V_{CE(sat)} .
- Low EMI
- Low Gate Charge .
- Qualified according to JEDEC¹ for target applications •
- Pb-free lead plating; RoHS compliant ٠
- Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

Туре	V _{CE}	I _C	V _{CE(sat),Tj=25℃}	T _{j,max}	Marking	Package
IGW75N60T	600V	75A	1.5V	175°C	G75T60	PG-TO247-3

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage, $T_j \ge 25^{\circ}C$	V _{CE}	600	V
DC collector current, limited by T_{jmax}			
$T_{\rm C} = 25^{\circ}{\rm C}$	I _C	118	
$T_{\rm C} = 100^{\circ}{\rm C}$		85	A
Pulsed collector current, t_p limited by T_{jmax}	<i>I</i> _{Cpuls}	225	
Turn off safe operating area $V_{CE} = 600V$, $T_j = 175^{\circ}C$, $t_p = 1\mu s$	-	225	
Gate-emitter voltage	V _{GE}	±20	V
Short circuit withstand time ²⁾	4	F	
V_{GE} = 15V, $V_{\text{CC}} \le 400$ V, $T_j \le 150^\circ$ C	t _{sc}	5	μS
Power dissipation $T_{\rm C} = 25^{\circ}{\rm C}$	P _{tot}	428	W
Operating junction temperature	Tj	-40+175	
Storage temperature	$T_{\rm stg}$	-55+150	°C
Soldering temperature, 1.6mm (0.063 in.) from case for 10s	-	260	

 1 J-STD-020 and JESD-022 $^{2)}$ Allowed number of short circuits: <1000; time between short circuits: <1s.

TRENCHSTOP[™] Series

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance,	R _{thJC}		0.35	K/W
junction – case				
Thermal resistance,	R _{thJA}		40	
junction – ambient				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

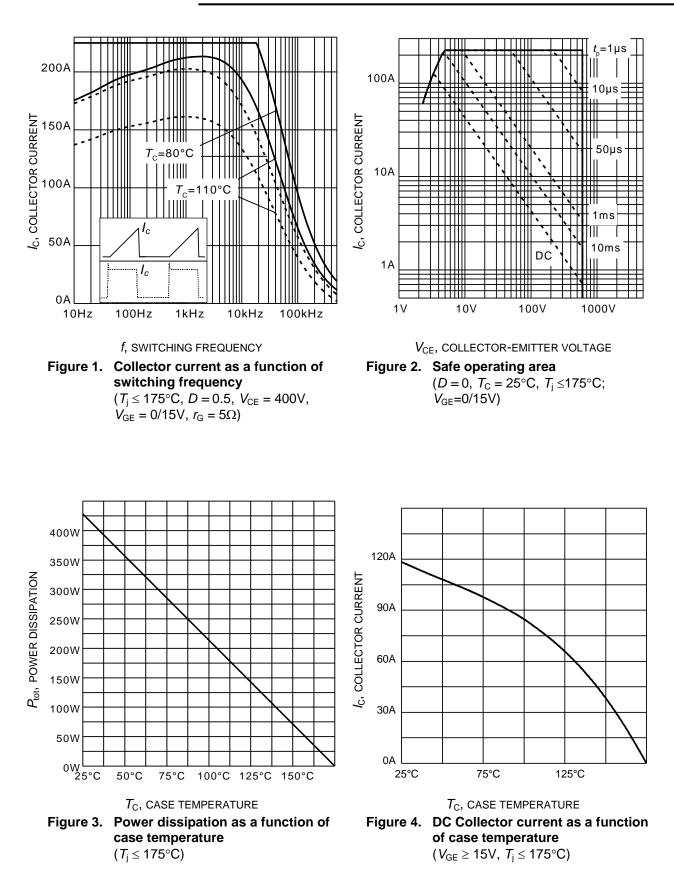
Parameter	Sumbol	Conditions	Value			Unit
Farameter	Symbol	Conditions	min.	Тур.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	V _{(BR)CES}	$V_{GE}=0V, I_{C}=0.2mA$	600	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE} = 15 V, I_{\rm C} = 75 A$				
		T _j =25°C	-	1.5	2.0	
		<i>T</i> _j =175°C	-	1.9	-	
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C}=1.2$ mA, $V_{\rm CE}=V_{\rm GE}$	4.1	4.9	5.7	
Zero gate voltage collector current	I _{CES}	V _{CE} =600V, V _{GE} =0V				μA
		T _j =25°C	-	-	40	
		<i>T</i> _j =175°C	-	-	5000	
Gate-emitter leakage current	I _{GES}	$V_{\rm CE} = 0 \text{V}, V_{\rm GE} = 20 \text{V}$	-	-	100	nA
Transconductance	$g_{ m fs}$	$V_{\rm CE} = 20 V, I_{\rm C} = 75 A$	-	41	-	S
Integrated gate resistor	R _{Gint}			-		Ω

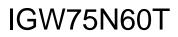
Dynamic Characteristic

Input capacitance	Ciss	V _{CE} =25V,	-	4620	-	pF
Output capacitance	Coss	$V_{GE}=0V$,	-	288	-	
Reverse transfer capacitance	Crss	f=1MHz	-	137	-	
Gate charge	Q _{Gate}	$V_{\rm CC}$ =480V, $I_{\rm C}$ =75A	-	470	-	nC
		$V_{GE}=15V$				
Internal emitter inductance	LE		-	13	-	nH
measured 5mm (0.197 in.) from case						
Short circuit collector current ¹⁾	I _{C(SC)}	V_{GE} =15V, t_{SC} ≤5 μ s V_{CC} = 400V, T_j ≤ 150°C	-	687.5	-	A

¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

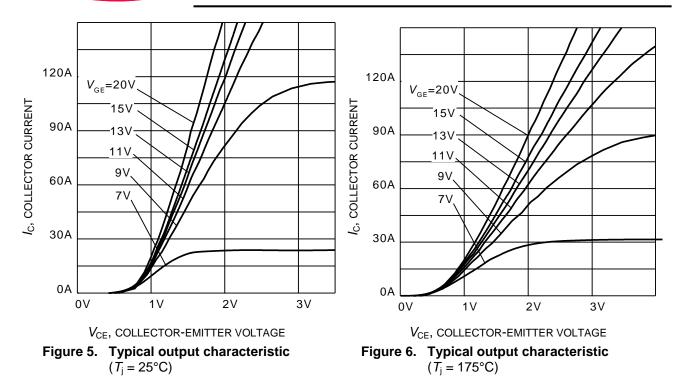
TRENCHSTOP[™] Series

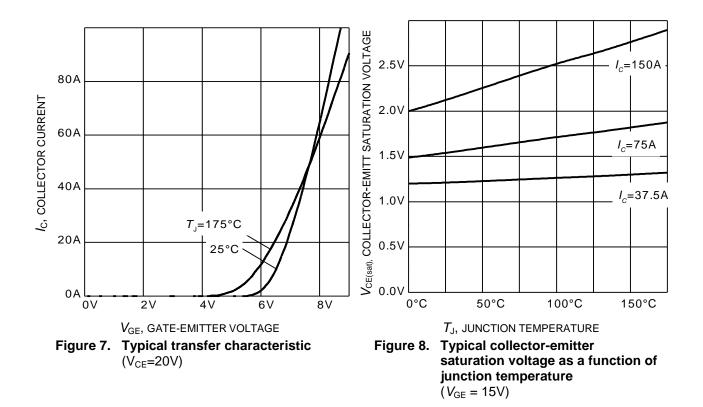

Switching Characteristic, Inductive Load, at $T_i=25$ °C

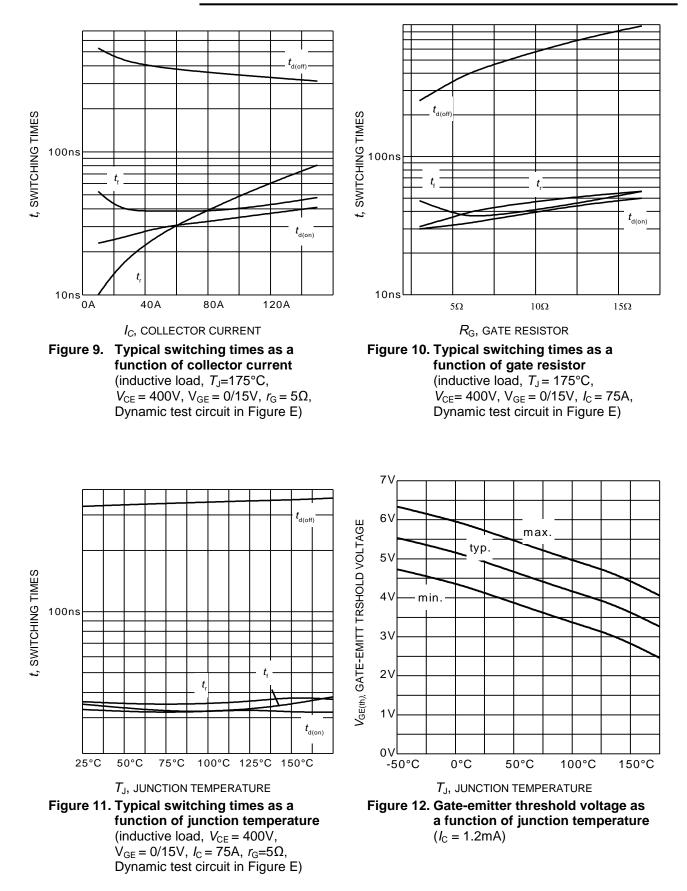

Parameter	Symbol C	O an dition a	Value			11
		Conditions	min.	Тур.	max.	Unit
IGBT Characteristic		·				
Turn-on delay time	t _{d(on)}	<i>T</i> _j =25°C,	-	33	-	ns
Rise time	t _r	V _{CC} =400V, <i>I</i> _C =75A, V _{GE} =0/15V,	-	36	-	
Turn-off delay time	$t_{d(off)}$	$r_{G}=5\Omega$, $L_{\sigma}=100$ nH, $C_{\sigma}=39$ pF L_{σ} , C_{σ} from Fig. E Energy losses include "tail" and diode reverse	-	330	-	
Fall time	t _f		-	35	-	
Turn-on energy ¹⁾	Eon		-	2.0	-	mJ
Turn-off energy	E _{off}		-	2.5	-	
Total switching energy	E _{ts}	recovery. Diode from IKW75N60T	-	4.5	-	

Switching Characteristic, Inductive Load, at T_j =175 °C

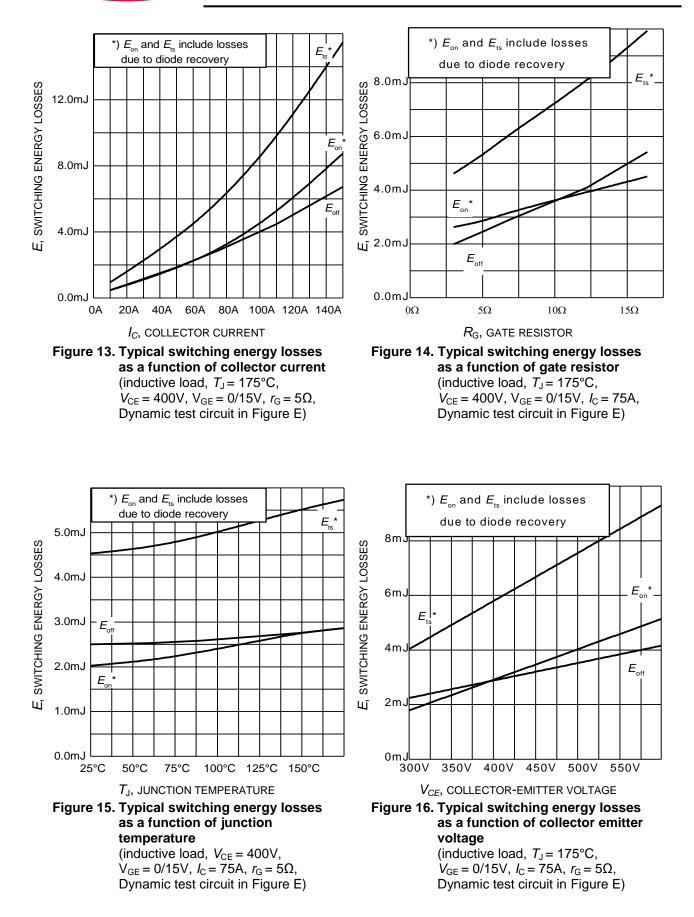
Parameter	Symbol	Conditions	Value			11
			min.	Тур.	max.	Unit
IGBT Characteristic		·				
Turn-on delay time	t _{d(on)}	<i>T</i> _j =175°C,	-	32	-	ns
Rise time	t _r	V _{CC} =400V, <i>I</i> _C =75A, V _{GE} =0/15V,	-	37	-	
Turn-off delay time	$t_{d(off)}$	$r_{\rm G}$ =5 Ω , L_{σ} =100nH, C_{σ} =39pF L_{σ} , C_{σ} from Fig. E Energy losses include "tail" and diode reverse	-	363	-	
Fall time	tf		-	38	-	
Turn-on energy ¹⁾	Eon		-	2.9	-	mJ
Turn-off energy	E _{off}		-	2.9	-	
Total switching energy	E _{ts}	recovery. Diode from IKW75N60T	-	5.8	-	

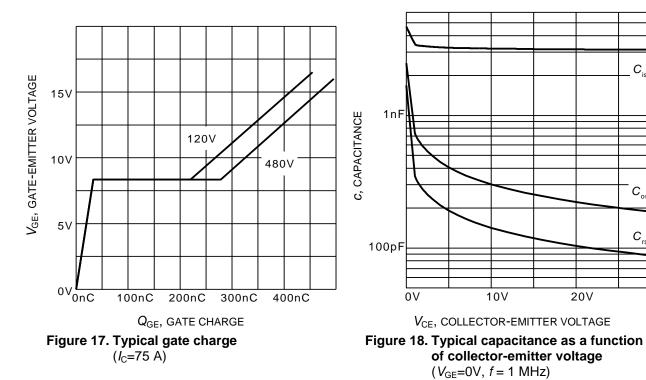


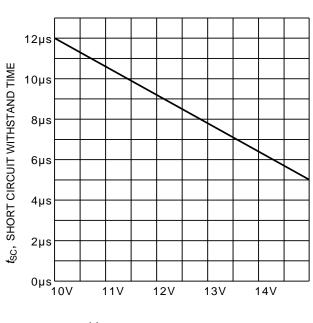


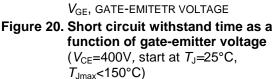


TRENCHSTOP[™] Series




 $\boldsymbol{C}_{\text{iss}}$


 $C_{\rm oss}$


C

20V

TRENCHSTOP™ Series

 $I_{\rm C(sc)}$, short circuit collector current

1000A

750A

500A

250A

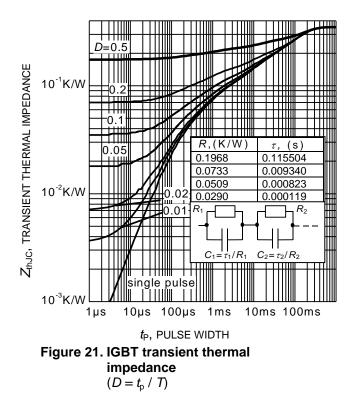
0A 12V

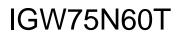
14V

16V

 V_{GE} , GATE-EMITTETR VOLTAGE

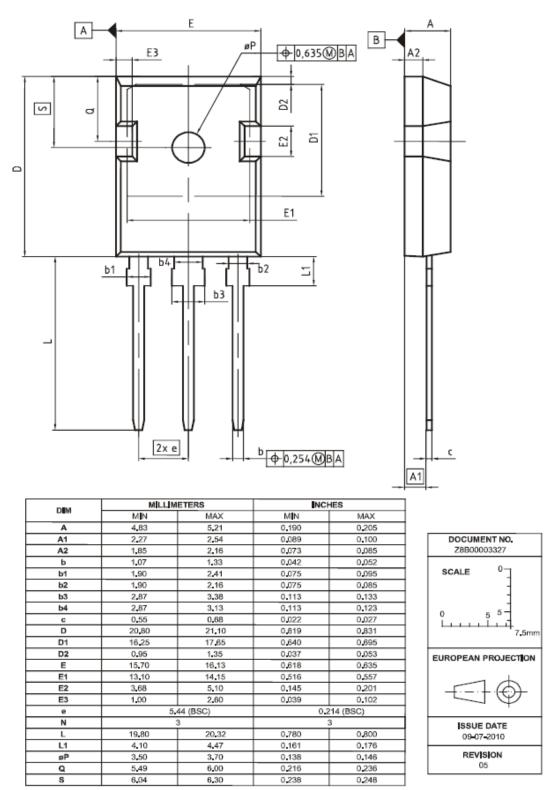
 $(V_{CE} \le 400 \text{V}, T_{i} \le 150^{\circ}\text{C})$


current as a function of gate-


Figure 19. Typical short circuit collector

emitter voltage

18V


_

2

TRENCHSTOP[™] Series

PG-TO247-3

TRENCHSTOP[™] Series

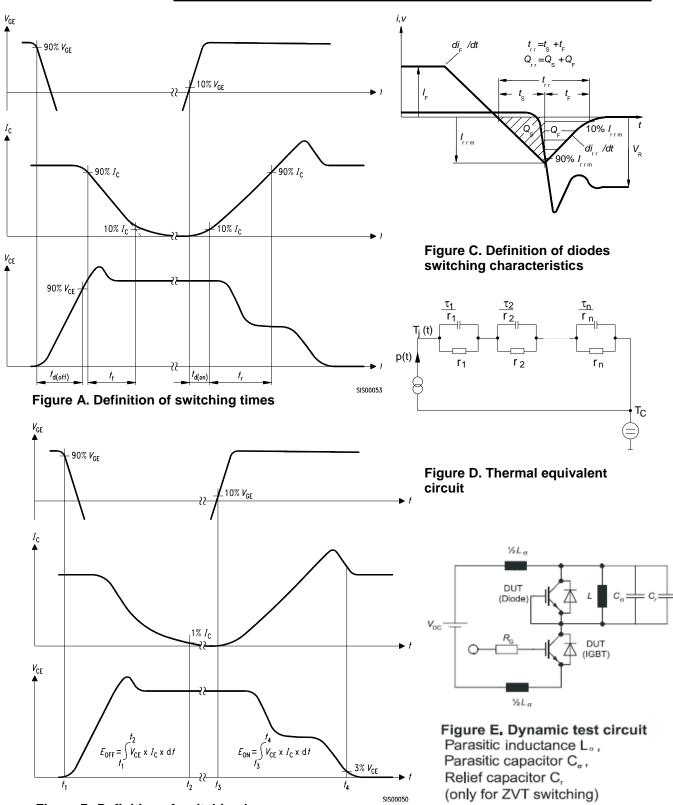


Figure B. Definition of switching losses

TRENCHSTOP[™] Series

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2018. All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is <u>not</u> qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H IGW40N120H3FKSA1 VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 QP12W05S-37A IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1