Low Loss DuoPack: IGBT in TrenchStop ${ }^{\circledR}$ and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

- Approx. 1.0V reduced $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ and 0.5 V reduced V_{F} compared to BUP314D
- Short circuit withstand time $-10 \mu \mathrm{~s}$
- Designed for :

- Frequency Converters
- Uninterrupted Power Supply
- TrenchStop ${ }^{\circledR}$ and Fieldstop technology for 1200 V applications offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior

- NPT technology offers easy parallel switching capability due to positive temperature coefficient in $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$
- Low EMI
- Low Gate Charge
- Very soft, fast recovery anti-parallel Emitter Controlled HE diode
- Qualified according to JEDEC ${ }^{1}$ for target applications
- Pb-free lead plating; RoHS compliant
- Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

Type	$V_{\text {CE }}$	I_{C}	$V_{\text {CE(sat) }, T_{j}=25^{\circ} \mathrm{C}}$	$T_{\mathrm{j}, \max }$	Marking Code	Package
IKW25T120	1200 V	25 A	1.7 V	$150^{\circ} \mathrm{C}$	K25T120	PG-TO-247-3

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CE }}$	1200	V
DC collector current $\begin{aligned} & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$	I_{C}	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	A
Pulsed collector current, t_{p} limited by $T_{\text {jmax }}$	$I_{\text {Cpuls }}$	75	
Turn off safe operating area $V_{\mathrm{CE}} \leq 1200 \mathrm{~V}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$	-	75	
Diode forward current $\begin{aligned} & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {F }}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	
Diode pulsed current, t_{p} limited by $T_{\text {jmax }}$	$I_{\text {Fpuls }}$	75	
Gate-emitter voltage	$V_{\text {GE }}$	± 20	V
Short circuit withstand time ${ }^{2)}$ $V_{\mathrm{GE}}=15 \mathrm{~V}, V_{\mathrm{CC}} \leq 1200 \mathrm{~V}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$	$t_{\text {Sc }}$	10	$\mu \mathrm{S}$
Power dissipation $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	190	W
Operating junction temperature	T_{j}	-40...+150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	$-55 \ldots+150$	

[^0]| Soldering temperature, 1.6 mm (0.063 in.) from case for 10 s |
| :--- |

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic IGBT thermal resistance, junction - case				
thJC Diode thermal resistance, junction - case	R_{thJCD}		0.65	K/W
Thermal resistance, junction - ambient	R_{thJA}		1.0	

Electrical Characteristic, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
Static Characteristic						
Collector-emitter breakdown voltage	$V_{\text {(bR)CES }}$	$V_{\mathrm{GE}}=0 \mathrm{~V}, I_{\mathrm{C}}=500 \mu \mathrm{~A}$	1200	-	-	V
Collector-emitter saturation voltage	$V_{\text {CE(sat) }}$	$\begin{aligned} & V_{\mathrm{GE}}=15 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.7 \\ & 2.0 \\ & 2.2 \end{aligned}$	2.2	
Diode forward voltage	V_{F}	$\begin{aligned} & V_{\mathrm{GE}}=0 \mathrm{~V}, I_{\mathrm{F}}=25 \mathrm{~A} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.7 \\ & 1.7 \\ & 1.7 \end{aligned}$	2.2	
Gate-emitter threshold voltage	$V_{G E(t h)}$	$\begin{aligned} & I_{\mathrm{C}}=1 \mathrm{~mA}, \\ & V_{\mathrm{CE}}=V_{\mathrm{GE}} \end{aligned}$	5.0	5.8	6.5	
Zero gate voltage collector current	$I_{\text {CES }}$	$\begin{aligned} & V_{\mathrm{CE}}=1200 \mathrm{~V}, \\ & V_{\mathrm{GE}}=0 \mathrm{~V} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$		-	$\begin{gathered} 0.25 \\ 2.5 \end{gathered}$	mA
Gate-emitter leakage current	$I_{\text {GES }}$	$V_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	-	600	nA
Transconductance	$g_{\text {fs }}$	$V_{C E}=20 \mathrm{~V}, I_{\text {C }}=25 \mathrm{~A}$	-	16	-	S
Integrated gate resistor	$R_{\text {Gint }}$			8		Ω

IKW25T120
TrenchStop ${ }^{\circledR}$ Series

Dynamic Characteristic						
Input capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{CE}}=25 \mathrm{~V}, \\ & V_{\mathrm{GE}}=0 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	1860	-	pF
Output capacitance	$C_{\text {oss }}$		-	96	-	
Reverse transfer capacitance	$C_{\text {rss }}$		-	82	-	
Gate charge	$Q_{\text {Gate }}$	$\begin{aligned} & V_{\mathrm{CC}}=960 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A} \\ & V_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	-	155	-	nC
Internal emitter inductance measured 5 mm (0.197 in .) from case	L_{E}		-	13	-	nH
Short circuit collector current ${ }^{11}$	$I_{\text {C(SC) }}$	$\begin{aligned} & V_{\mathrm{GEE}}=15 \mathrm{~V}, t_{\mathrm{SC}} \leq 10 \mu \mathrm{~s} \\ & V_{\mathrm{CC}}=600 \mathrm{~V}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	150	-	A

Switching Characteristic, Inductive Load, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
IGBT Characteristic						
Turn-on delay time	$t_{\text {d }(\text { on) }}$	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C}, \\ & V_{\mathrm{CC}}=600 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A} \\ & V_{\mathrm{GE}}=0 / 15 \mathrm{~V}, \\ & R_{\mathrm{G}}=22 \Omega, \\ & L_{\sigma^{2)}}{ }^{2)}=180 \mathrm{nH}, \\ & C_{\sigma}{ }^{2)}=39 \mathrm{pF} . \end{aligned}$ Energy losses include "tail" and diode reverse recovery.	-	50	-	ns
Rise time	t_{r}		-	30	-	
Turn-off delay time	$t_{\text {d (off) }}$		-	560	-	
Fall time	$t_{\text {f }}$		-	70	-	
Turn-on energy	$E_{\text {on }}$		-	2.0	-	mJ
Turn-off energy	$E_{\text {off }}$		-	2.2	-	
Total switching energy	$E_{\text {ts }}$		-	4.2	-	

Anti-Parallel Diode Characteristic						
Diode reverse recovery time	$t_{\text {rr }}$	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C}, \\ & V_{\mathrm{R}}=600 \mathrm{~V}, I_{\mathrm{F}}=25 \mathrm{~A}, \\ & d i_{\mathrm{F}} / d t=800 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	200		ns
Diode reverse recovery charge	Q_{rr}		-	2.3		$\mu \mathrm{C}$
Diode peak reverse recovery current	$I_{\text {rrm }}$		-	21		A
Diode peak rate of fall of reverse recovery current during t_{b}	$d i_{\text {rr }} / d t$			390		A/ $\mu \mathrm{s}$

[^1]Switching Characteristic, Inductive Load, at $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Value			Unit
			typ.	max.		

IGBT Characteristic

Turn-on delay time	$t_{\text {d }(\text { on })}$	$\begin{aligned} & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & V_{\mathrm{CC}}=600 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A}, \\ & V_{\mathrm{GE}}=0 / 15 \mathrm{~V}, \\ & R_{\mathrm{G}}=22 \Omega, \\ & L_{\sigma}{ }^{1}=180 \mathrm{nH}, \\ & \underline{C}_{\sigma}{ }^{1)}=39 \mathrm{pF} \end{aligned}$ Energy losses include "tail" and diode reverse recovery.	-	50	-	ns
Rise time	t_{r}		-	32	-	
Turn-off delay time	$t_{\text {d (off) }}$		-	660	-	
Fall time	t_{f}		-	130	-	
Turn-on energy	$E_{\text {on }}$		-	3.0	-	mJ
Turn-off energy	$E_{\text {off }}$		-	4.0	-	
Total switching energy	$E_{\text {ts }}$		-	7.0	-	

Anti-Parallel Diode Characteristic

Diode reverse recovery time	$t_{\text {rr }}$	$\begin{aligned} & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & V_{\mathrm{R}}=600 \mathrm{~V}, I_{\mathrm{F}}=25 \mathrm{~A}, \\ & d i_{\mathrm{F}} / d t=800 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	320	-	ns
Diode reverse recovery charge	$Q_{\text {rr }}$		-	5.2	-	$\mu \mathrm{C}$
Diode peak reverse recovery current	$I_{\text {rrm }}$		-	29	-	A
Diode peak rate of fall of reverse recovery current during t_{b}	$d i_{\text {rr }} / d t$		-	320		A/ $\mu \mathrm{s}$

${ }^{1)}$ Leakage inductance L_{σ} and Stray capacity C_{σ} due to dynamic test circuit in Figure E.

Figure 1. Collector current as a function of switching frequency
$\left(T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}, D=0.5, V_{\mathrm{CE}}=600 \mathrm{~V}\right.$, $V_{\mathrm{GE}}=0 /+15 \mathrm{~V}, R_{\mathrm{G}}=22 \Omega$)

T_{C}, CASE TEMPERATURE
Figure 3. Power dissipation as a function of case temperature
($T_{j} \leq 150^{\circ} \mathrm{C}$)

Figure 2. Safe operating area
($D=0, T_{\mathrm{C}}=25^{\circ} \mathrm{C}$,
$\left.T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}\right)$

T_{C}, CASE TEMPERATURE
Figure 4. Collector current as a function of case temperature
$\left(V_{G E} \geq 15 \mathrm{~V}, T_{j} \leq 150^{\circ} \mathrm{C}\right.$)

Figure 5. Typical output characteristic ($T_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

V_{GE}, GATE-EMItTER VOLTAGE
Figure 7. Typical transfer characteristic ($\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}$)

Figure 6. Typical output characteristic $\left(T_{j}=150^{\circ} \mathrm{C}\right)$

Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature
($V_{G E}=15 \mathrm{~V}$)

Figure 9. Typical switching times as a function of collector current (inductive load, $T_{\mathrm{J}}=150^{\circ} \mathrm{C}$, $V_{\mathrm{CE}}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, R_{\mathrm{G}}=22 \Omega$, Dynamic test circuit in Figure E)

Figure 10. Typical switching times as a function of gate resistor
(inductive load, $T_{\mathrm{J}}=150^{\circ} \mathrm{C}$,
$V_{\mathrm{CE}}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A}$,
Dynamic test circuit in Figure E)

T_{J}, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a function of junction temperature (inductive load, $V_{\mathrm{CE}}=600 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A}, R_{\mathrm{G}}=22 \Omega$,
Dynamic test circuit in Figure E)

Figure 12. Gate-emitter threshold voltage as a function of junction temperature $\left(I_{\mathrm{C}}=1.0 \mathrm{~mA}\right)$

IKW25T120

Figure 13. Typical switching energy losses as a function of collector current (inductive load, $T_{\mathrm{J}}=150^{\circ} \mathrm{C}$,
$V_{\text {CE }}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, R_{\mathrm{G}}=22 \Omega$, Dynamic test circuit in Figure E)

T_{J}, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses as a function of junction temperature
(inductive load, $V_{\text {CE }}=600 \mathrm{~V}$,
$V_{G E}=0 / 15 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A}, R_{\mathrm{G}}=22 \Omega$,
Dynamic test circuit in Figure E)

Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, $T_{J}=150^{\circ} \mathrm{C}$,
$V_{\text {CE }}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A}$,
Dynamic test circuit in Figure E)

$V_{C E}$, COLLECTOR-EMITTER VOLTAGE
Figure 16. Typical switching energy losses as a function of collector emitter voltage
(inductive load, $T_{J}=150^{\circ} \mathrm{C}$
$V_{G E}=0 / 15 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A}, R_{\mathrm{G}}=22 \Omega$,
Dynamic test circuit in Figure E)

Figure 17. Typical gate charge
($I_{\mathrm{c}}=25 \mathrm{~A}$)

$V_{\text {GE }}$, GATE-EMITTETR VOLTAGE
Figure 19. Short circuit withstand time as a function of gate-emitter voltage ($V_{\text {CE }}=600 \mathrm{~V}$, start at $T_{\mathrm{J}}=25^{\circ} \mathrm{C}$)

Figure 18. Typical capacitance as a function of collector-emitter voltage
($V_{G E}=0 \mathrm{~V}, f=1 \mathrm{MHz}$)

Figure 20. Typical short circuit collector current as a function of gateemitter voltage
$\left(V_{\mathrm{CE}} \leq 600 \mathrm{~V}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}\right)$

IKW25T120

Figure 21. Typical turn on behavior
$\left(\mathrm{V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, R_{\mathrm{G}}=22 \Omega, T_{\mathrm{j}}=150^{\circ} \mathrm{C}\right.$, Dynamic test circuit in Figure E)

Figure 23. IGBT transient thermal resistance ($D=t_{\mathrm{p}} / T$)

Figure 22. Typical turn off behavior
($\mathrm{V}_{\mathrm{GE}}=15 / \mathrm{OV}, R_{\mathrm{G}}=22 \Omega, T_{\mathrm{j}}=150^{\circ} \mathrm{C}$,
Dynamic test circuit in Figure E)

Figure 24. Diode transient thermal impedance as a function of pulse width
($D=t_{\mathrm{P}} / T$)

Figure 23. Typical reverse recovery time as a function of diode current slope ($V_{R}=600 \mathrm{~V}, l_{F}=25 \mathrm{~A}$,
Dynamic test circuit in Figure E)

Figure 24. Typical reverse recovery charge as a function of diode current slope
($V_{R}=600 \mathrm{~V}, l_{F}=25 \mathrm{~A}$,
Dynamic test circuit in Figure E)

$d i_{\mathrm{F}} / d t$, DIODE CURRENT SLOPE
Figure 25. Typical reverse recovery current as a function of diode current slope
($V_{R}=600 \mathrm{~V}, l_{F}=25 \mathrm{~A}$,
Dynamic test circuit in Figure E)

$d i_{F} / d t$, DIODE CURRENT SLOPE
Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope ($V_{R}=600 \mathrm{~V}, I_{F}=25 \mathrm{~A}$,
Dynamic test circuit in Figure E)

Figure 27. Typical diode forward current as a function of forward voltage

Figure 28. Typical diode forward voltage as a function of junction temperature

IKW25T120
TrenchStop ${ }^{\circledR}$ Series
PG-TO247-3

DEM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.83	5.21	0.190	0.205
A1	2.27	2.54	0.089	0.100
A2	1.85	2.16	0.073	0.085
b	1.07	1.33	0.042	0.052
b1	1.90	2.41	0.075	0.095
b2	1.90	2.16	0.075	0,085
b3	2.87	3.38	0.113	0.133
b4	2.87	3.13	0.113	0.123
c	0.55	0.68	0.022	0.027
D	20,80	21.10	0.819	0.831
D1	16.25	17.65	0.840	0.895
D2	0.95	1.35	0.837	0.053
E	15.70	16.13	0.818	0.835
E1	13.10	14.15	0.516	0.557
E2	3.68	5.10	0.145	0.201
E3	1.00	2.60	0.039	0.102
e	5.44 (BSC)		0.214 (BSC)	
N	3		3	
L	19.80	20.32	0.780	0.800
11	4.10	4.47	0.161	0.176
sp	3.50	3.70	0.138	0.146
Q	5.49	6.00	0.216	0.236
S	6.04	6.30	0.238	0.248

DOCUMENT NO. Z8BOOOO3327
SCALE
EUROPEAN PROJECTION
ISSUE DATE
OSOOT-2010
REVISION
OS

Figure A. Definition of switching times

Figure B. Definition of switching losses

Figure C. Definition of diodes switching characteristics

Figure D. Thermal equivalent circuit

Figure E. Dynamic test circuit Leakage inductance $L_{\sigma}=180 \mathrm{nH}$ and Stray capacity $C_{\sigma}=39 \mathrm{pF}$.

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Transistors category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H IGW40N120H3FKSA1 VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0\#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 QP12W05S-37A IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0\#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 APT70GR120JD60 AOD5B60D APT70GR120L STGWT60H65FB STGWT60H65DFB STGWT40V60DF STGWT20V60DF STGB10NB37LZT4

[^0]: ${ }^{1}$ J-STD-020 and JESD-022
 ${ }^{2)}$ Allowed number of short circuits: <1000; time between short circuits: >1 s.

[^1]: ${ }^{1)}$ Allowed number of short circuits: <1000; time between short circuits: $>1 \mathrm{~s}$.
 ${ }^{2}$) Leakage inductance L_{σ} and Stray capacity C_{σ} due to dynamic test circuit in Figure E.

