CoolMOS ${ }^{\text {TM }}$ Power Transistor

Features

- Worldwide best $R_{\mathrm{ds}, \text { on }}$ in TO220
- Ultra low gate charge
- Extreme dv/dt rated
- High peak current capability
- Automotive AEC Q101 qualified
- Green package (RoHS compliant)

Product Summary

V_{DS}	600	V
$R_{\mathrm{DS} \text { (on), max }}$	0.105	Ω
$Q_{\text {g,typ }}$	60	nC

CoolMOS CPA is specially designed for:

- DC/DC converters for Automotive Applications

Type	Package	Marking
IPP60R099CPA	PG-TO220-3-1	6R099A

Maximum ratings, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	$I_{\text {D }}$	$T_{\text {C }}=25^{\circ} \mathrm{C}$	31	A
		$T_{\mathrm{C}}=100{ }^{\circ} \mathrm{C}$	19	
Pulsed drain current ${ }^{1)}$	$I_{\text {D,pulse }}$	$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	93	
Avalanche energy, single pulse	$E_{\text {AS }}$	$I_{\mathrm{D}}=11 \mathrm{~A}, V_{\text {DD }}=50 \mathrm{~V}$	800	mJ
Avalanche energy, repetitive $t_{A R}{ }^{1,2)}$	$E_{\text {AR }}$	$I_{\mathrm{D}}=11 \mathrm{~A}, V_{\mathrm{DD}}=50 \mathrm{~V}$	1.2	
Avalanche current, repetitive $t_{\text {AR }}{ }^{1), 2)}$	$I_{\text {AR }}$		11	A
MOSFET $\mathrm{d} v / \mathrm{d} t$ ruggedness	$\mathrm{d} v / \mathrm{d} t$	$V_{\text {DS }}=0 . . .480 \mathrm{~V}$	50	V/ns
Gate source voltage	$V_{\text {GS }}$	static	± 20	V
Power dissipation	$P_{\text {tot }}$	$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	255	W
Operating temperature	T_{j}		-40 ... 150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$		-40 ... 150	
Mounting torque		M3 and M3.5 screws	60	Ncm

Maximum ratings, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous diode forward current	I_{S}	${ }_{\mathrm{C}}=25^{\circ} \mathrm{C}$	18	A
Diode pulse current ${ }^{1)}$	$I_{\mathrm{S}, \text { pulse }}$		93	
Reverse diode $\mathrm{d} v / \mathrm{d} t^{3)}$	$\mathrm{d} v / \mathrm{d} t$		15	V/ns

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	

Thermal characteristics

Thermal resistance, junction - case	$R_{\text {thJc }}$		-	-	0.5	K/W
Thermal resistance, junction - ambient	$R_{\text {thJA }}$	leaded	-	-	62	
Soldering temperature, wavesoldering only allowed at leads	$T_{\text {sold }}$	$1.6 \mathrm{~mm}(0.063 \mathrm{in})$. from case for 10 s	-	-	260	${ }^{\circ} \mathrm{C}$

Electrical characteristics, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	$V_{\text {(BR)DSs }}$	$V_{G S}=0 \mathrm{~V}, I_{\text {d }}=250 \mu \mathrm{~A}$	600	-	-	V
Gate threshold voltage	$V_{\text {GS(th) }}$	$V_{\text {DS }}=V_{\text {GS }}, I_{\text {D }}=1.2 \mathrm{~mA}$	2.5	3	3.5	
Zero gate voltage drain current	I Dss	$\begin{aligned} & V_{\mathrm{DS}}=600 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	5	$\mu \mathrm{A}$
Gate-source leakage current	$I_{\text {GSS }}$	$V_{\mathrm{GS}}=20 \mathrm{~V}, V_{\text {DS }}=0 \mathrm{~V}$	-	-	100	nA
Drain-source on-state resistance	$R_{\text {DS(on) }}$	$\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{\mathrm{D}}=18 \mathrm{~A}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	0.09	0.105	Ω
		$\begin{aligned} & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=18 \mathrm{~A}, \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	-	0.24	-	
Gate resistance	$R_{\text {G }}$	$f=1 \mathrm{MHz}$, open drain	-	1.3	-	Ω

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	

Dynamic characteristics

Input capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=100 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	2800	-	pF
Output capacitance	$C_{\text {oss }}$		-	130	-	
Effective output capacitance, energy related ${ }^{4)}$	$C_{\text {o(er) }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=0 \mathrm{~V} \\ & \text { to } 480 \mathrm{~V} \end{aligned}$	-	130	-	
Effective output capacitance, time related ${ }^{5)}$	$C_{\text {o(tr) }}$		-	340	-	
Turn-on delay time	$t_{\text {d(on) }}$	$\begin{aligned} & V_{\mathrm{DD}}=400 \mathrm{~V}, \\ & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=18 \mathrm{~A}, \\ & R_{\mathrm{G}}=3.3 \Omega \end{aligned}$	-	10	-	ns
Rise time	t_{r}		-	5	-	
Turn-off delay time	$t_{\text {d(off) }}$		-	60	-	
Fall time	$t_{\text {f }}$		-	5	-	

Gate Charge Characteristics

Gate to source charge	$Q_{\text {gs }}$	$\begin{aligned} & V_{\mathrm{DD}}=400 \mathrm{~V}, I_{\mathrm{D}}=18 \mathrm{~A}, \\ & V_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \end{aligned}$	-	14	-	nC
Gate to drain charge	$Q_{\text {gd }}$		-	20	-	
Gate charge total	Q_{g}		-	60	80	
Gate plateau voltage	$V_{\text {plateau }}$		-	5.0	-	V

Reverse Diode

Diode forward voltage	V_{SD}	$V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{F}}=18 \mathrm{~A}$, $T_{\mathrm{j}}=25{ }^{\circ} \mathrm{C}$	-	0.9	1.2	V
Reverse recovery time	t_{rr}					
Reverse recovery charge	Q_{rr}	$V_{\mathrm{R}}=400 \mathrm{~V}, I_{\mathrm{F}}=I_{\mathrm{S}}$, $\mathrm{d} i_{\mathrm{F}} / \mathrm{d} t=100 \mathrm{~A} / \mu \mathrm{S}$	-	450	-	ns
Peak reverse recovery current	I_{rrm}		-	12	-	$\mu \mathrm{C}$

[^0]1 Power dissipation
$P_{\text {tot }}=\mathrm{f}\left(T_{\mathrm{C}}\right)$

3 Max. transient thermal impedance
$Z_{\text {thJC }}=\mathrm{f}\left(t_{\mathrm{P}}\right)$
parameter: $D=t_{p} / T$

2 Safe operating area

$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{DS}}\right) ; T_{\mathrm{C}}=25^{\circ} \mathrm{C} ; D=0$
parameter: t_{p}

4 Typ. output characteristics
$I_{D}=f\left(V_{D S}\right) ; T_{j}=25^{\circ} \mathrm{C}$
parameter: $V_{\text {GS }}$

5 Typ. output characteristics
$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{DS}}\right) ; T_{\mathrm{j}}=150^{\circ} \mathrm{C}$
parameter: $V_{\text {GS }}$

7 Drain-source on-state resistance

$R_{\mathrm{DS}(\text { on })}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=18 \mathrm{~A} ; V_{\mathrm{GS}}=10 \mathrm{~V}$

6 Typ. drain-source on-state resistance
$R_{\text {DS(on) }}=\mathrm{f}\left(I_{\mathrm{D}}\right) ; T_{\mathrm{j}}=150^{\circ} \mathrm{C}$
parameter: $V_{\text {GS }}$

8 Typ. transfer characteristics
$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{GS}}\right) ;\left|V_{\mathrm{DS}}\right|>2\left|I_{\mathrm{D}}\right| R_{\mathrm{DS}(\text { on }) \text { max }}$
parameter: T_{j}

9 Typ. gate charge
$V_{\mathrm{GS}}=\mathrm{f}\left(Q_{\text {gate }}\right) ; I_{\mathrm{D}}=18 \mathrm{~A}$ pulsed
parameter: $V_{\text {DD }}$

11 Avalanche energy
$E_{\mathrm{AS}}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=11 \mathrm{~A} ; V_{\mathrm{DD}}=50 \mathrm{~V}$

10 Forward characteristics of reverse diode
$I_{\mathrm{F}}=\mathrm{f}\left(V_{\mathrm{SD}}\right)$
parameter: T_{j}

12 Drain-source breakdown voltage
$V_{\mathrm{BR}(\mathrm{DSS})}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=0.25 \mathrm{~mA}$

13 Typ. capacitances
$C=f\left(V_{\mathrm{DS}}\right) ; V_{\mathrm{GS}}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$

14 Typ. Coss stored energy
$E_{\text {oss }}=f\left(V_{D S}\right)$

Definition of diode switching characteristics

PG-TO220-3: Outlines

DIM	MILIMETERS		NCHES	
	MN	Max	$\mathrm{M} \mid \mathrm{N}$	MAX
A	4.30	4.67	0.169	0.180
A1	1.17	1.40	0,046	0.055
A2	2,15	2.72	0,085	0,107
b	0,65	0.86	0.028	0.034
b1	0,95	1.40	0,037	0.055
b2	0.95	1.15	0.037	0.045
b3	0.65	1.15	0.028	0.045
c	0,33	0,60	0,013	0,024
D	14.81	16.96	0.563	0.828
D1	8.51	9,45	0,335	0.372
D2	12,19	13,10	0,480	0,517
E	9.70	10.38	0,382	0.408
E1	6,50	8,60	0,256	0.338
C	2.54		0.100	
el	5.08		0.200	
N	3		3	
H1	5.90	6.90	0.232	0.272
L	13.00	14.00	0.512	0.551
L1	-	4,80	.	0,189
dP	3.60	3.89	0.142	0.163
Q	2,90	3,00	0,102	0.118

Dimensions in mm/inches:

Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2009.
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein any typical values stated herein and/or any information regarding the application of the device Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, includins without limitation warranties of non-infringement of intellectual property rights of any third party

Information

For further information on technology, delivery terms and conditions and prices pleas ϵ contact your nearest Infineon Technologies Office (www.infineon.com)

Warnings

Due to technical requirements components may contain dangerous substances. For informatior on the types in question please contact your nearest Infineon Technologies Office Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonabl) be expected to cause the failure of that life-support device or system, or to affect the safety ol effectiveness of that device or system. Life support devices or systems are intended to b \in implanted in the human body, or to support and/or maintain and sustain and/or protect human life If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
N° 040/10

Information on N-Channel MOSFET products designed for automotive applications

Products affected:

SalesName	Package
IPB60R099CPA	PG-TO263-3-2
IPB60R199CPA	PG-TO263-3-2
IPB60R299CPA	PG-TO263-3-2
IPC60R075CPA	Bare Die
IPI60R099CPA	PG-TO262-3-1
IPP60R099CPA	PG-TO220-3-1
IPW60R045CPA	PG-TO247-3-41
IPW60R075CPA	PG-TO247-3-41
IPW60R099CPA	PG-TO247-3-41

Dear Customer,
The devices listed for this notification are sensitive to hard commutation of the conducting body diode. This operating condition can occur in half-bridge configurations used in ZVS phase shift and resonant switching PWM converters. Using the device under such conditions may result in violation of the datasheet specification limits and may lead to permanent damage of the device.
Please take care that in the context of the application described above the datasheet limits are not exceeded.

Best Regards
Michael Paulu

If you have any questions, please do not hesitate to contact your local Sales office.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Infineon manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 59628877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7

[^0]: ${ }^{1)}$ Pulse width t_{p} limited by $T_{\mathrm{j}, \text { max }}$
 ${ }^{2)}$ Repetitive avalanche causes additional power losses that can be calculated as $P_{\mathrm{AV}}=E_{\mathrm{AR}}{ }^{\star} f$.
 ${ }^{3)} I_{\text {SD }}<=I_{\mathrm{D}}, \mathrm{di} / \mathrm{d} t<=100 \mathrm{~A} / \mu \mathrm{s}, V_{\text {DClink }}=400 \mathrm{~V}, V_{\text {peak }}<V_{(\mathrm{BR}) \mathrm{DSS}}, T_{\mathrm{j}}<T_{\text {jmax }}$, identical low side and high side switch
 ${ }^{4)} C_{\text {o(er) }}$ is a fixed capacitance that gives the same stored energy as $C_{\text {oss }}$ while $V_{\text {DS }}$ is rising from 0 to $80 \% V_{\text {DSs. }}$
 ${ }^{5)} C_{\text {o(tr) }}$ is a fixed capacitance that gives the same charging time as $C_{\text {oss }}$ while $V_{\text {DS }}$ is rising from 0 to $80 \% V_{\text {DSs }}$.

