International

 Data Sheet No. PD60206 Rev.D
Features

- Simple primary side control solution to enable half-bridge DC-Bus Converters for 48 V distributed systems with reduced component count and board space
- Integrated 50% duty cycle oscillator \& half-bridge driver IC in a single SO-8 package
- Programmable switching frequency with up to 500 kHz max per channel
- +/- 1A drive current capability optimized for low charge MOSFETs
- Adjustable dead-time 50ns - 200ns
- Floating channel designed for bootstrap operation up to $+100 \mathrm{Vdc}$
- High and low side pulse width matching to +/- $25 n s$
- Adjustable overcurrent protection
- Undervoltage lockout and internal soft start
- Also available Leadfree

Product Summary

Topology	Half-Bridge
$\mathrm{V}_{\text {OFFSET }}$	$\leq 100 \mathrm{~V}$
$\mathrm{I}_{0+} \& \mathrm{I}_{\mathrm{o}-}$ (typical)	$1.0 \mathrm{~A} \& 1.0 \mathrm{~A}$
$\mathrm{f}_{\text {OsC }}$ (max)	500 kHz
Deadtime	$50 \mathrm{~ns}-200 \mathrm{~ns}$
HO/LO Pulse Matching	$+/-25 \mathrm{~ns}$

Package

8 - Lead SOIC

Description

The IR2085S is a self-oscillating half-bridge driver IC with 50% duty cycle ideally suited for $36 \mathrm{~V}-75 \mathrm{~V}$ halfbridge DC-bus converters.
This product is also suitable for push-pull converters without restriction on input voltage.
Each channel frequency is equal to $f_{\text {Osc }}$, which can be set by selecting R_{T} \& C_{T}, where $f_{\text {osc }}=1 /\left(2^{*} R_{T} \cdot C_{T}\right)$. Dead-time can be controlled through proper selection of C_{T} and can range from 50 ns to 200 ns . Internal soft-start increases the pulse width during power up and maintains pulse width matching for the high and low outputs throughout the start up cycle. The IR2085S initiates a soft start at power up and after every overcurrent condition. Undervoltage lockout prevents operation if V_{Cc} is less than 7.5 V .

Typical Connection Diagram

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. All currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V_{b}	High side floating supply voltage	-0.3	150	V
V_{CC}	Low side supply voltage	-	25	
V_{S}	High side floating supply offset voltage	$\mathrm{V}_{\mathrm{b}}-25$	$\mathrm{V}_{\mathrm{b}}+0.3$	
V_{HO}	High side floating output voltage	V b -0.3	$\mathrm{V}_{\mathrm{b}}+0.3$	
VLO	Low side output voltage	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	
OSC	OSC pin voltage	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	
V_{CS}	Cs pin voltage	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	
$\mathrm{dV}_{\mathrm{S}} / \mathrm{dt}$	Allowable offset voltage slew rate	-50	+50	V/ns
Icc	Supply current	-	20	mA
P_{D}	Package power dissipation	-	1.0	W
RthJA	Thermal resistance, junction to ambient	-	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
TJ	Junction temperature	-55	150	${ }^{\circ} \mathrm{C}$
Ts	Storage temperature	-55	150	
TL	Lead temperature (soldering, 10 seconds)	-	300	

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions.

Symbol	Definition	Min.	Max.	Units
Vb	High side floating supply voltage	$\mathrm{V}_{\mathrm{dd}}-0.7$	15	
$\mathrm{~V}_{\mathrm{S}}$	Steady state high side floating supply offset voltage	-5	100	Vdc
V_{CC}	Supply voltage	10	15	
$\mathrm{I} C \mathrm{C}$	Supply current (Note 2)	-	5	mA
R_{T}	Timing resistor	10	100	$\mathrm{~K} \Omega$
C_{T}	Timing capacitor	47	1000	pF
fosc(max)	Operating frequency (per channel)	-	500	KHz
T_{J}	Junction temperature	-40	125	${ }^{\circ} \mathrm{C}$

Note1: Care should be taken to avoid output switching conditions where the Vs node flies inductively below ground by more than 5 V .

Dynamic Electrical Characteristics

$V_{B I A S}\left(V_{C C}, V_{B S}\right)=12 \mathrm{~V}, C_{L O A D}=1000 \mathrm{pF}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Definition	Min.	Typ.	Max.	Units	Test Conditions
tr_{r}	Turn-on rise time	-	40	60	nsec	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$
tf	Turn-off fall time	-	20	30		
fosc	Per channel output frequency	500	-	-	KHz	$\begin{aligned} \mathrm{C}_{\mathrm{T}} & =100 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{T}} & =10 \mathrm{Kohm} \end{aligned}$
tdt	High/low output dead time	50	-	-	nsec	
$\mathrm{t}_{\mathrm{dcs}}$	Overcurrent shut down delay	-	200	-		pulse on CS
PM	High/low pulse width mismatch	-25	-	25		$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \sim 100 \mathrm{~V}$

Static Electrical Characteristics

$V_{\text {BIAS }}\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BS}}\right)=12 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Definition	Min.	Typ.	Max.	Units	Test Conditions
V_{OH}	High level output voltage, (VBIAS - V_{O})	-	-	1.5	V	
VOL	Low level output voltage	-	-	0.1		
leak	Offset supply leakage current	-	-	50	$\mu \mathrm{A}$	
IQBS	Quiescent $\mathrm{V}_{\text {BS }}$ supply current	-	-	150		
IQCC	Quiescent $\mathrm{V}_{\text {CC }}$ supply current	-	-	1.5	mA	
$\mathrm{V}_{\mathrm{CS}+}$	Overcurrent shutdown threshold	250	300	350	mV	
$\mathrm{V}_{\text {CS }}$	Overcurrent shutdown threshold	150	200	250	mV	
UVcc+	Undervoltage positive going threshold	6.8	7.3	7.8	V	
UVCC-	Undervoltage negative going threshold	6.3	6.8	7.3		
UVBS+	High side undervoltage positive going threshold	6.8	7.3	7.8		
UVBS-	High side undervoltage negative going threshold	6.3	6.8	7.3		
$10+$	Output high short circuit current	-	1.0	-	A	
Io-	Output low short circuit current	-	1.0	-		

Functional Block Diagrams

Lead Definitions
Lead Assignments

Symbol	Description
VCC	Logic supply
GND	Logic supply return
Vb	High side floating supply
VS	Floating supply return
HO	High side output
LO	Low side output
CS	Current sense input
OSC	Oscillator pin

Fig. 1 Typical Output Frequency $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$

Fig. 2 Typical Dead Time (@25으)

Fig. 3 Typical Dead Time vs Temperature

Pin Descriptions

Cs: The input pin to the overcurrent comparator. Exceeding the overcurrent threshold value specified in "Static Electrical Parameters" Section will terminate output pulses and start a new soft start cycle as soon as the voltage on the pin reduce below the threshold value.

OSC: The oscillator-programming pin. Only two components are required to program the internal oscillator frequency: a resistor connected between the V_{cc} pin and the OSC pin, and a capacitor connected from the OSC to COM. The approximate oscillator frequency is determined by the following simple formula:

$$
f_{\mathrm{OSC}}=1 /\left(2 \cdot R_{T} \cdot C_{T}\right)
$$

Where frequency is in Hertz (Hz), RT resistance in Ohms (Ω) and CT capacitance in Farads (F). The recommended range of timing resistors is between $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ and range of time capacitances is between 47 pF and 470 pF . The timing resistors less than $10 \mathrm{k} \Omega$ should be avoided. The value of the timing capacitor determines the amount of dead time between the two output drivers: lower the CT, shorter the dead time and vice versa. It is not recommended to use a timing capacitor below 47pF, for best performance keep the timing components physically as close as possible to the IR2085S. Separated ground and V_{CC} traces to the timing components are encouraged.

COM: Signal ground and power ground for all functions. Due to high current and high frequency operation, a low impedance circuit board ground plane is highly recommended.

HO, LO: High side and low side gate drive pins. The high and low side drivers can directly drive the gate of a power MOSFET. The drivers are capable of 1A peak source and sink currents. It is recommended that the high and low drive pins be very close to the gates of the high side and low side MOSFETs to prevent any delay and distortion of the drive signals.
V_{B} : The high side power input connection. The high side supply is derived from a bootstrap circuit using a low-leakage Schottky diode and a ceramic capacitor. To prevent noise, the Schottky diode and bypass capacitor should be very close to the IR2085S.
V_{s} : The high side power return connection. V_{S} should be connected directly to the source terminal of high side MOSFET with a trace as short as possible.
V_{cc} : The IC bias input connection for the device. Although the quiescent V_{cc} current is very low, total supply current will be higher, depending on the gate charge of the MOSFETs connected to the HO and LO pins, and the programmed oscillator frequency, total V_{CC} current is the sum of quiescent V_{CC} current and the average current at HO and LO. Knowing the operating frequency and the MOSFET gate charge (Qg) at selected V_{CC} voltage, the average current can be calculated from:
lave $=2 \times$ Qg Xfosc
To prevent noise problem, a bypass ceramic capacitor connected to V_{CC} and COM should be placed as close as possible to the IR2085S.

IR2085S has an under voltage lookout feature for the IC bias supply, V_{CC}. The minimum voltage required on V_{cc} to make sure that IC will work within specifications must be higher than 8.5 V (9.5 V minimum V_{cc} is recommended to prevent asymmetrical gates signal on HO and LO pins that are expected when V_{CC} is between 7.5 V and 8.5 V).

Case outline

LEADFREE PART MARKING INFORMATION

ORDERING INFORMATION

PKG DESIG	PART NUMBER	LEADFREE PART NUMBER	PIN COUNT	PARTS PER TUBE	PARTS PER REEL
S	IR2085S	IR2085SPbF	8	95	----
S	IR2085STR	IR2085STRPbF	8	---	4000

International
 Iger Rectifier

This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR's Web Site http://www.irf.com/.

Data and specifications subject to change without notice WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :

```
00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-
1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-
RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P}\mathrm{ 6131-
220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63
```

