Features

SELF-OSCILLATING HALF-BRIDGE DRIVER

- Floating channel designed for bootstrap operation Fully operational to +600 V
Tolerant to negative transient voltage dV/dt immune
- Undervoltage lockout
- Programmable oscillator frequency

$$
f=\frac{1}{1.4 \times\left(\mathrm{R}_{\mathrm{T}}+150 \Omega\right) \times \mathrm{C}_{\mathrm{T}}}
$$

- Matched propagation delay for both channels
- Micropower supply startup current of $125 \mu \mathrm{~A}$ typ.
- Low side output in phase with R_{T}
- Available in Lead-Free

Description

The IR2155 is a high voltage, high speed, selfoscillating power MOSFET and IGBT driver with both high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The front end features a programmable oscillator which is similar to the 555 timer. The output drivers feature a high pulse current buffer stage and an internal deadtime designed for minimum driver crossconduction. Propagation delays for the two channels are matched to simplify use in 50% duty cycle applications. The floating channel can be used to drive an N -channel power

Product Summary

VOFFSET	600 V max.
Duty Cycle	50%
lo+/-	$210 \mathrm{~mA} / 420 \mathrm{~mA}$
Vout	$10-20 \mathrm{~V}$
Deadtime (typ.)	$1.2 \mu \mathrm{~s}$

Package

MOSFET or IGBT in the high side configuration that operates off a high voltage rail up to 600 volts.

Typical Connection

www.irf.com

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

	Parameter			
Symbol	Definition	Min.	Max.	Units
V_{B}	High Side Floating Supply Voltage	-0.3	625	V
V_{S}	High Side Floating Supply Offset Voltage	$\mathrm{V}_{\mathrm{B}}-25$	$\mathrm{V}_{\mathrm{B}}+0.3$	
V_{HO}	High Side Floating Output Voltage	$\mathrm{V}_{\text {S }}-0.3$	$\mathrm{V}_{\mathrm{B}}+0.3$	
VLO	Low Side Output Voltage	-0.3	$V_{C C}+0.3$	
V_{RT}	RT Voltage	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	
V_{CT}	$\mathrm{C}_{\text {T Voltage }}$	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	
Icc	Supply Current (Note 1)	-	25	mA
IRT	RT Output Current	-5	5	
$\mathrm{dV}_{\mathrm{S}} / \mathrm{dt}$	Allowable Offset Supply Voltage Transient	-	50	V/ns
PD	Package Power Dissipation @ $\mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}$ (8 Lead DIP)	-	1.0	W
	(8 Lead SOIC)	-	0.625	
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction to Ambient (8 Lead DIP)	-	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	(8 Lead SOIC)	-	200	
TJ	Junction Temperature	-	150	${ }^{\circ} \mathrm{C}$
TS	Storage Temperature	-55	150	
TL	Lead Temperature (Soldering, 10 seconds)	-	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_{S} offset rating is tested with all supplies biased at 15 V differential.

Parameter		Value		Units
Symbol	Definition	Min.	Max.	
V_{B}	High Side Floating Supply Absolute Voltage	$\mathrm{V}_{\mathrm{S}}+10$	$\mathrm{V}_{\mathrm{S}}+20$	
V_{S}	High Side Floating Supply Offset Voltage	-	600	
V_{HO}	High Side Floating Output Voltage	$\mathrm{V}_{\text {S }}$	V_{B}	
VLO	Low Side Output Voltage	0	V_{CC}	
Icc	Supply Current (Note 1)	-	5	mA
$\mathrm{T}_{\text {A }}$	Ambient Temperature	-40	125	${ }^{\circ} \mathrm{C}$

Note 1: Because of the IR2155's application specificity toward off-line supply systems, this IC contains a zener clamp structure between the chip V_{CC} and COM which has a nominal breakdown voltage of 15.6 V . Therefore, the IC supply voltage is normally derived by forcing current into the supply lead (typically by means of a high value resistor connected between the chip V_{CC} and the rectified line voltage and a local decoupling capacitor from V_{CC} to COM) and allowing the internal zener clamp circuit to determine the nominal supply voltage. Therefore, this circuit should not be driven by a DC, low impedance power source of greater than $V_{C L A M P}$.

Dynamic Electrical Characteristics

$\mathrm{V}_{\mathrm{BIAS}}\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BS}}\right)=12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter		Value			Units	Test Conditions
Symbol	Definition	Min.	Typ.	Max.		
tr_{r}	Turn-On Rise Time	-	80	120	ns	
t_{r}	Turn-Off Fall Time	-	40	70		
DT	Deadtime	0.50	1.20	2.25	$\mu \mathrm{s}$	
D	$\mathrm{R}_{\text {T }}$ Duty Cycle	48	50	52	\%	

Static Electrical Characteristics

$\mathrm{V}_{\mathrm{BIAS}}\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BS}}\right)=12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. The $\mathrm{V}_{I N}, \mathrm{~V}_{T H}$ and I_{IN} parameters are referenced to COM. The V_{O} and $\mathrm{Io} \mathrm{p}_{\mathrm{o}}$ parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Parameter		Value			Units	Test Conditions
Symbol	Definition	Min.	Typ.	Max.		
$\mathrm{f}_{\text {OSC }}$	Oscillator Frequency	19.4	20.0	20.6	kHz	$\mathrm{R}_{\mathrm{T}}=35.7 \mathrm{k} \Omega$
		94	100	106		$\mathrm{R}_{\mathrm{T}}=7.04 \mathrm{k} \Omega$
$\mathrm{V}_{\text {cLAMP }}$	$\mathrm{V}_{\text {CC }}$ Zener Shunt Clamp Voltage	14.4	15.6	16.8	V	$\mathrm{I}_{\mathrm{CC}}=5 \mathrm{~mA}$
$\mathrm{V}_{\text {CT+ }}$	2/3 $\mathrm{V}_{\text {cc }}$ Threshold	7.8	8.0	8.2		
$\mathrm{V}_{\text {CT- }}$	$1 / 3 \mathrm{~V}_{\text {CC }}$ Threshold	3.8	4.0	4.2		
$\mathrm{V}_{\text {ctuv }}$	C_{T} Undervoltage Lockout	-	20	50	mV	$2.5 \mathrm{~V}<\mathrm{V}_{\text {CC }}<\mathrm{V}_{\text {CCUV }}$
$\mathrm{V}_{\mathrm{RT}}+$	R_{T} High Level Output Voltage, $\mathrm{V}_{\text {CC }}-\mathrm{R}_{\mathrm{T}}$	-	0	100		$\mathrm{I}_{\mathrm{RT}}=-100 \mu \mathrm{~A}$
		-	200	300		$\mathrm{I}_{\text {RT }}=-1 \mathrm{~mA}$
$\mathrm{V}_{\text {RT- }}$	RT Low Level Output Voltage	-	20	50		$\mathrm{I}_{\mathrm{RT}}=100 \mu \mathrm{~A}$
		-	200	300		$\mathrm{I}_{\mathrm{RT}}=1 \mathrm{~mA}$
$\mathrm{V}_{\text {RTUV }}$	RT Undervoltage Lockout, $\mathrm{V}_{\text {CC }}-\mathrm{R}_{\mathrm{T}}$	-	0	100		$2.5 \mathrm{~V}<\mathrm{V}_{\text {CC }}<\mathrm{V}_{\text {CCUV }}$
V_{OH}	High Level Output Voltage, $\mathrm{V}_{\text {BIAS }}-\mathrm{V}_{\mathrm{O}}$	-	-	100		$\mathrm{l}_{0}=0 \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage, $\mathrm{V}_{\text {O }}$	-	-	100		$\mathrm{I}_{0}=0 \mathrm{~A}$
ILK	Offset Supply Leakage Current	-	-	50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{S}}=600 \mathrm{~V}$
I ${ }_{\text {QBS }}$	Quiescent $\mathrm{V}_{\text {BS }}$ Supply Current	-	70	150		
I QBSUV	Micropower $\mathrm{V}_{\text {BS }}$ Supply Startup Current	-	55	125		
IOcc	Quiescent $\mathrm{V}_{\text {CC }}$ Supply Current	-	500	1000		
loccuv	Micropower $\mathrm{V}_{\text {CC }}$ Supply Startup Current	-	70	150		
ICT	$\mathrm{C}_{\text {T }}$ Input Current	-	0.001	1.0		
$\mathrm{V}_{\text {BSUV+ }}$	V_{BS} Supply Undervoltage Positive Going Threshold	7.7	8.4	9.2	V	
$\mathrm{V}_{\text {BSUV }}$	V_{BS} Supply Undervoltage Negative Going Threshold	7.3	8.1	8.9		
$\mathrm{V}_{\text {BSUVH }}$	$\mathrm{V}_{\text {BS }}$ Supply Undervoltage Lockout Hysteresis	100	400	-	mV	
$\mathrm{V}_{\text {CCUV }}$	$\mathrm{V}_{\text {CC }}$ Supply Undervoltage Positive Going Threshold	7.7	8.4	9.2	V	
$\mathrm{V}_{\text {ccuv }}$	V_{CC} Supply Undervoltage Negative Going Threshold	7.4	8.1	8.9		
$\mathrm{V}_{\text {CCUVH }}$	$\mathrm{V}_{\text {CC }}$ Supply Undervoltage Lockout Hysteresis	200	400	-	mV	
l_{+}	Output High Short Circuit Pulsed Current	210	250	-	mA	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
10.	Output Low Short Circuit Pulsed Current	420	500	-		$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$

Lead Definitions

Lead	
Symbol	Description
R_{T}	Oscillator timing resistor input,in phase with LO for normal IC operation
C_{T}	Oscillator timing capacitor input, the oscillator frequency according to the following equation: where 150Ω is the effective impedance of the R_{T} output stage V_{B} HO V_{S}
V_{CC}	High side floating supply side gate drive output
LO	High side floating supply return
COM	Low side and logic fixed supply

Lead Assignments

IR2155\&(PbF)

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Deadtime Waveform Definitions

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

8-Lead PDIP IR2155 order IR2155

Lead-Free Part
8-Lead PDIP IR2155 order IR2155PbF

International
IßR Rectifier
This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web Site. Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
09/08/04
www.irf.com 7

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
$\underline{00028} \underline{00053 \mathrm{P} 0231} \underline{8967380000} 56956$ CR7E-30DB-3.96E(72) 57.404.7355.5 LT4936 57.904.0755.0 5801-0903 5803-0901 5811-0902

1003W-10/32-15 LTILA6E-1S-WH-RC-FN12VXCR1 0131700000 00-2240 LTP70N06 LVP640 0158-624-00 5J0-1000LG-SIL 020017-13
LY1D-2-5S-AC120 LY2-0-US-AC120 LY2-US-AC240 LY3-UA-DC24 00-5150 00576P0020 00600P0010 LZNQ2M-US-DC5 LZNQ2-
US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP

