International Rectifier - Generation V Technology - Ultra Low On-Resistance - Dual N-Channel Mosfet - Surface Mount - Available in Tape & Reel - Dynamic dv/dt Rating - Fast Switching - Lead-Free #### **Description** Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application. # IRF7341PbF HEXFET® Power MOSFET #### **Absolute Maximum Ratings** | | Parameter | Max. | Units | | |--|---|--------------|-------|--| | V_{DS} | Drain- Source Voltage | 55 | V | | | I _D @ T _C = 25°C | Continuous Drain Current, V _{GS} @ 10V | 4.7 | | | | I _D @ T _C = 70°C | Continuous Drain Current, V _{GS} @ 10V | 3.8 | A | | | I _{DM} | Pulsed Drain Current ① | 38 | | | | P _D @T _C = 25°C | Power Dissipation | 2.0 | W | | | P _D @T _C = 70°C | Power Dissipation | 1.3 | vv | | | | Linear Derating Factor | 0.016 | W/°C | | | V_{GS} | Gate-to-Source Voltage | ± 20 | V | | | V_{GSM} | Gate-to-Source Voltage Single Pulse tp<10µs | 30 | V | | | E _{AS} | Single Pulse Avalanche Energy® | 72 | | | | dv/dt | Peak Diode Recovery dv/dt ③ | 5.0 | V/ns | | | T _J , T _{STG} | Junction and Storage Temperature Range | -55 to + 150 | °C | | #### Thermal Resistance | | Parameter | Тур. | Max. | Units | |-----------------|------------------------------|------|------|-------| | $R_{\theta JA}$ | Maximum Junction-to-Ambient® | | 62.5 | °C/W | # IRF7341PbF ### Electrical Characteristics @ T_{.I} = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | | |-----------------------------------|---------------------------------------|------|-------|-------|-------|--|--| | V _{(BR)DSS} | Drain-to-Source Breakdown Voltage | 55 | | | V | $V_{GS} = 0V, I_D = 250\mu A$ | | | $\Delta V_{(BR)DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient | | 0.059 | | V/°C | Reference to 25°C, I _D = 1mA | | | R _{DS(on)} | Static Drain-to-Source On-Resistance | | 0.043 | 0.050 | Ω | V _{GS} = 10V, I _D = 4.7A ⊕ | | | TVDS(on) | Ctatio Brain to Course on recolctance | | 0.056 | 0.065 | 22 | $V_{GS} = 4.5V, I_D = 3.8A \oplus$ | | | V _{GS(th)} | Gate Threshold Voltage | 1.0 | | | V | $V_{DS} = V_{GS}$, $I_D = 250\mu A$ | | | 9fs | Forward Transconductance | 7.9 | | | S | $V_{DS} = 10V, I_D = 4.5A$ | | | 1 | Drain-to-Source Leakage Current | | | 2.0 | | $V_{DS} = 55V, V_{GS} = 0V$ | | | I _{DSS} | Dialii-to-Source Leakage Current | | | 25 | μΑ | $V_{DS} = 55V, V_{GS} = 0V, T_{J} = 55^{\circ}C$ | | | I _{GSS} | Gate-to-Source Forward Leakage | | | -100 | nA | $V_{GS} = -20V$ | | | IGSS | Gate-to-Source Reverse Leakage | _ | | 100 | 11/ | $V_{GS} = 20V$ | | | Qg | Total Gate Charge | | 24 | 36 | | $I_D = 4.5A$ | | | Q _{gs} | Gate-to-Source Charge | | 2.3 | 3.4 | nC | $V_{DS} = 44V$ | | | Q _{gd} | Gate-to-Drain ("Miller") Charge | | 7.0 | 10 | | V _{GS} = 10V, See Fig. 10 ⊕ | | | t _{d(on)} | Turn-On Delay Time | | 8.3 | 12 | | $V_{DD} = 28V$ | | | t _r | Rise Time | | 3.2 | 4.8 | ne | $I_D = 1.0A$ | | | t _{d(off)} | Turn-Off Delay Time | | 32 | 48 | ns | $R_G = 6.0\Omega$ | | | t _f | Fall Time | | 13 | 20 | | $R_D = 16\Omega$, \oplus | | | C _{iss} | Input Capacitance | | 740 | | | V _{GS} = 0V | | | Coss | Output Capacitance | | 190 | | pF | $V_{DS} = 25V$ | | | C _{rss} | Reverse Transfer Capacitance | | 71 | | | f = 1.0MHz, See Fig. 9 | | ### **Source-Drain Ratings and Characteristics** | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------|--|------|------|------|-------|--| | Is | Continuous Source Current (Body Diode) | | | 2.0 | | MOSFET symbol showing the | | I _{SM} | Pulsed Source Current (Body Diode) ① | _ | | 38 | - A | integral reverse p-n junction diode. | | V _{SD} | Diode Forward Voltage | | | 1.2 | V | $T_J = 25$ °C, $I_S = 2.0$ A, $V_{GS} = 0$ V ③ | | t _{rr} | Reverse Recovery Time | | 60 | 90 | ns | $T_J = 25^{\circ}C, I_F = 2.0A$ | | Q _{rr} | Reverse RecoveryCharge | | 120 | 170 | nC | di/dt = -100A/µs ③ | #### Notes: - ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) - ② Starting $T_J = 25^{\circ}\text{C}$, L = 6.5mH $R_G = 25\Omega$, $I_{AS} = 4.7\text{A}$. (See Figure 8) - $\label{eq:loss} \begin{array}{l} \text{ (3)} \ \ I_{SD} \leq 4.7A, \ di/dt \leq 220A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ \ \ T_{J} \leq 150 ^{\circ}C \end{array}$ - 4 Pulse width \leq 300 μ s; duty cycle \leq 2%. - ⑤ When mounted on 1 inch square copper board, t<10 sec # International TOR Rectifier # IRF7341PbF Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics Fig 3. Typical Transfer Characteristics Fig 4. Typical Source-Drain Diode Forward Voltage **Fig 5.** Normalized On-Resistance Vs. Temperature Fig 6. Typical On-Resistance Vs. Drain Current 200 TOP 2.1A 3.8A BOTTOM 4.7A BOTTOM 4.7A BOTTOM 4.7A BOTTOM 5.50 BOTTOM 4.7A BOTTOM 5.50 BOTT **Fig 7.** Typical On-Resistance Vs. Gate Voltage Fig 8. Maximum Avalanche Energy Vs. Drain Current I_D # IRF7341PbF **Fig 9.** Typical Capacitance Vs. Drain-to-Source Voltage **Fig 10.** Typical Gate Charge Vs. Gate-to-Source Voltage Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ## SO-8 Package Outline Dimensions are shown in milimeters (inches) # SO-8 Part Marking Information (Lead-Free) # SO-8 Tape and Reel Dimensions are shown in milimeters (inches) - 1. CONTROLLING DIMENSION: MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. - NOTES: 1. CONTROLLING DIMENSION: MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/04 #### IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). #### WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for MOSFET category: Click to view products by Infineon manufacturer: Other Similar products are found below: 614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7