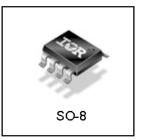


SMPS MOSFET

HEXFET® Power MOSFET


Applications


- High frequency DC-DC converters
- Lead-Free

V _{DSS}	R _{DS(on)} max	I _D
100V	0.060 Ω	4.5A

Benefits

- Low Gate to Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.5	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	3.6	A
I _{DM}	Pulsed Drain Current ①	36	
P _D @T _A = 25°C	Power Dissipation	2.5	W
	Linear Derating Factor	0.02	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	3.5	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Typical SMPS Topologies

 Telecom 48V input DC-DC with Half Bridge Primary or Datacom 28V input with Passive Reset Forward Converter Primary

Notes ① through ⑤ are on page 8

Static @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V$, $I_{D} = 250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA €
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.060	Ω	V _{GS} = 10V, I _D = 2.7A ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	uА	$V_{DS} = 100 V, V_{GS} = 0 V$
			——	250	μΛ	V_{DS} = 80V, V_{GS} = 0V, T_J = 150°C
I _{GSS}	Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage			100	nΑ	V _{GS} = 24V
				-100	''^	V _{GS} = -24V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g fs	Forward Transconductance	3.4			S	$V_{DS} = 50V, I_{D} = 2.7A$
Qg	Total Gate Charge		33	50		I _D = 2.7A
Qgs	Gate-to-Source Charge		7.3	11	nC	V _{DS} = 80V
Q _{gd}	Gate-to-Drain ("Miller") Charge		16	24		V _{GS} = 10V, ④
t _{d(on)}	Turn-On Delay Time		9.5			V _{DD} = 50V
tr	Rise Time		11		ns	$I_D = 2.7A$
t _{d(off)}	Turn-Off Delay Time		16		""	$R_G = 6.0\Omega$
tf	Fall Time		13			V _{GS} = 10V ④
C _{iss}	Input Capacitance		930			V _{GS} = 0V
Coss	Output Capacitance		300			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		84		pF	f = 1.0MHz
Coss	Output Capacitance		1370]]	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		170			$V_{GS} = 0V$, $V_{DS} = 80V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		280			V _{GS} = 0V, V _{DS} = 0V to 80V (\$)

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy②		200	mJ
I _{AR}	Avalanche Current①		4.5	Α
E _{AR}	Repetitive Avalanche Energy①		0.25	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
Reja	Maximum Junction-to-Ambient®		50	°C/W

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions				
Is	Continuous Source Current			2.3		MOSFET symbol□				
	(Body Diode)		2.3		A	showing the				
I _{SM}	Pulsed Source Current		2/		26	2.0	26	36	^	integral reverse
	(Body Diode) ①					p-n junction diode.				
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 2.7$ A, $V_{GS} = 0$ V ④				
t _{rr}	Reverse Recovery Time		77	120	ns	T _J = 25°C, I _F = 2.7A				
Q _{rr}	Reverse RecoveryCharge		270	410	nC	di/dt = 100A/µs ④				

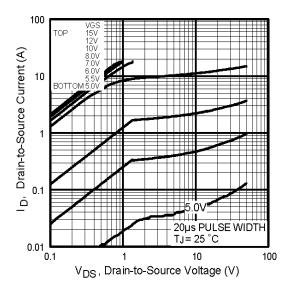


Fig 1. Typical Output Characteristics

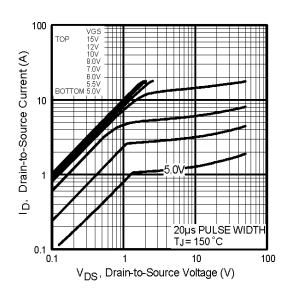
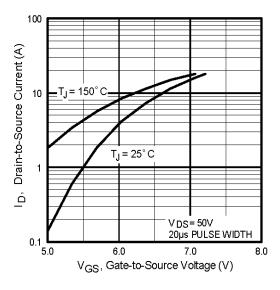
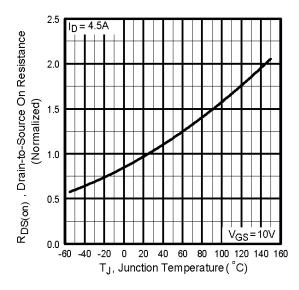
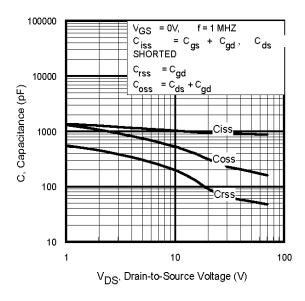


Fig 2. Typical Output Characteristics

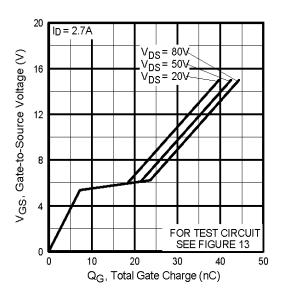

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

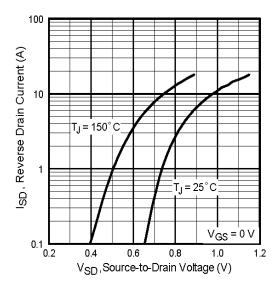


Fig 7. Typical Source-Drain Diode Forward Voltage

4

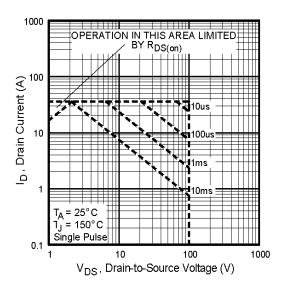
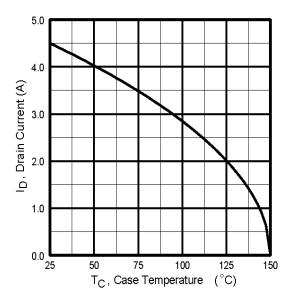



Fig 8. Maximum Safe Operating Area

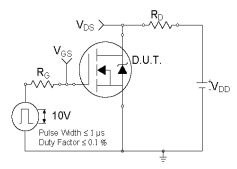


Fig 10a. Switching Time Test Circuit

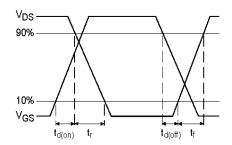
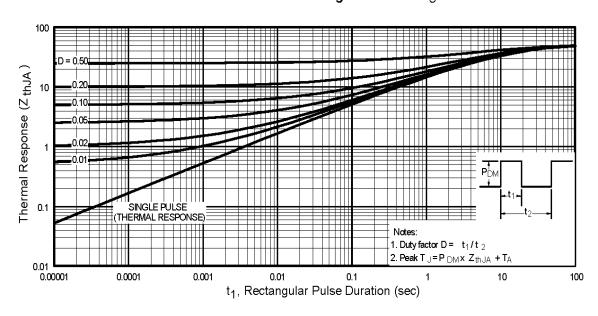
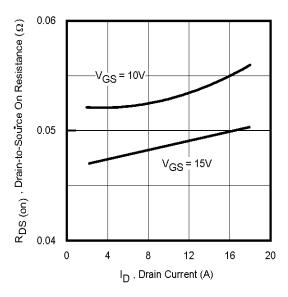
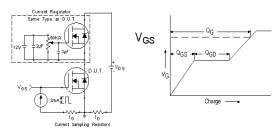
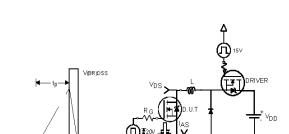



Fig 10b. Switching Time Waveforms

Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com

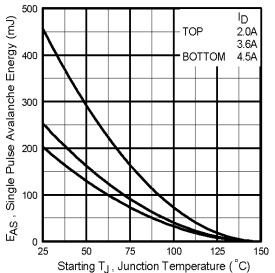
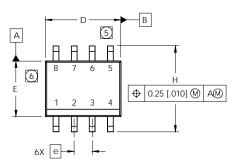

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

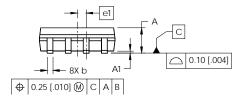
Fig 13a&b. Basic Gate Charge Test Circuit and Waveform

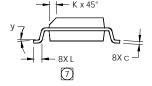
Fig 14a&b. Unclamped Inductive Test circuit and Waveforms

Fig 14c. Maximum Avalanche Energy Vs. Drain Current www.irf.com

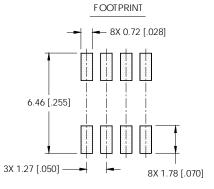

International

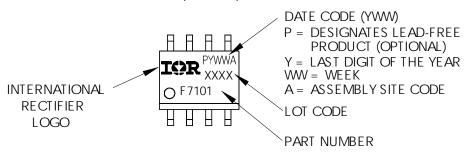
TOR Rectifier


IRF7452PbF


SO-8 Package Outline

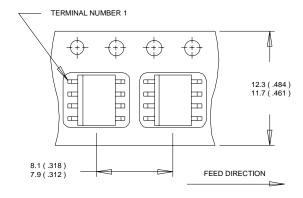
Dimensions are shown in millimeters (inches)

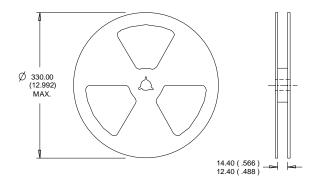

DIM	INC	HES	MILLIM	ETERS
DIIVI	MIN MA		MIN	MAX
Α	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
С	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
Е	.1497	.1574	3.80	4.00
е	.050 B	ASIC	1.27 B	ASIC
e1	.025 B	.025 BASIC 0.635 BA		BASIC
Н	.2284	.2440	5.80	6.20
K	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
У	0°	8°	0°	8°


NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking


EXAMPLE: THIS IS AN IRF7101 (MOSFET)


International IOR Rectifier

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
- ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.08/04

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P54TU,LF SSM6P69NU,LF DMP22D4UFO-7B