

V _{DSS}	30	V
R _{DS(on) max} (@ V _{GS} =10V)	4.5	mΩ
Qg (typical)	16	nC
I _D (@Τ _{c(Bottom)} = 25°C)	79©	А

PQFN 5 x 6 mm

Applications

• Control MOSFET for Buck Converters

Features and Benefits

Features

Features		Benefits
Low charge (typical 16nC)		Lower Conduction Losses
Low Thermal Resistance to PCB (<2.7°C/W)		Increased Power Density
100% Rg Tested		Increased Reliability
Low Profile (≤ 0.9 mm)	results ir	Increased Power Density
Industry-Standard Pinout	\Rightarrow	Multi-Vendor Compatibility
Compatible with Existing Surface Mount Techniques		Easier Manufacturing
RoHS Compliant, Halogen-Free		Environmentally Friendlier
MSL1, Industrial Qualification		Increased Reliability

Base part number	Package Type	Standard P	ack	Orderable Part Number
		Form	Quantity	
IRFH5304PbF	PQFN 5 mm x 6 mm	Tape and Reel	4000	IRFH5304TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	30	V
V _{GS}	Gate-to-Source Voltage	± 20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	22	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	17	
I _D @ T _{c(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	796	А
I _D @ T _{c(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	506	
I _{DM}	Pulsed Drain Current①	320	
P _D @T _A = 25°C	Power Dissipation	3.6	W
P _D @T _{c(Bottom)} = 25°C	Power Dissipation	46	
	Linear Derating Factor®	0.029	W/°C
TJ	Operating Junction and		°C
T _{STG}	Storage Temperature Range		

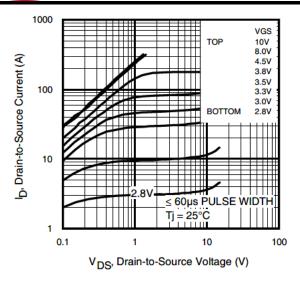
Notes ${\rm \textcircled{O}}$ through ${\rm \textcircled{G}}$ are on page 8

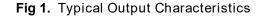
Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = 1.0mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.8	4.5	mΩ	V _{GS} = 10V, I _D = 47A ②
			5.8	6.8		V _{GS} = 4.5V, I _D = 47A ②
V _{GS(th)}	Gate Threshold Voltage	1.35	1.8	2.35	V	$V_{DS} = V_{GS}, I_D = 50 \mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-6.6		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			5.0		$V_{DS} = 24V, V_{GS} = 0V$
				150	μA	V _{DS} = 24V, V _{GS} = 0V, T _J = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			100		V _{GS} = 20 V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20 V
gfs	Forward Transconductance	88			S	V _{DS} = 15 V, I _D = 47A
Q _g	Total Gate Charge		41			V _{GS} = 10V, V _{DS} = 15V, I _D = 49A
Q _g	Total Gate Charge		16	56		V _{DS} = 15V
Q _{gs1}	Pre-Vth Gate-to-Source Charge		3.6			I _D = 47A
Q_{gs2}	Post-Vth Gate-to-Source Charge		2.7		nC	V _{GS} = 4.5V
Q_gd	Gate-to-Drain Charge		5.8			See Fig.17 & 18
Q_{godr}	Gate Charge Overdrive		3.9			
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		8.5			
Q _{oss}	Output Charge		9.8		nC	V _{DS} = 16V, V _{GS} = 0V
R_{G}	Gate Resistance		1.2		Ω	
t _{d(on)}	Turn-On Delay Time		13			V _{DD} = 15V, V _{GS} = 4.5V
t _r	Rise Time		25		ns	I _D = 47A
t _{d(off)}	Turn-Off Delay Time		12			R _G = 1.8Ω
t _f	Fall Time		6.6			See Fig.15
C _{iss}	Input Capacitance		2360			V _{GS} = 0V
C _{oss}	Output Capacitance		510		pF	V _{DS} = 10V
C _{rss}	Reverse Transfer Capacitance		220]	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		46	mJ
I _{AR}	Avalanche Current①		47	A


Diode Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current			46	Α	MOSFET symbol
	(Body Diode)					showing the $($
I _{SM}	Pulsed Source Current			320①		integral reverse
	(Body Diode)					p-n junction diode.
V_{SD}	Diode Forward Voltage		0.71			T _J = 25°C, I _S =5A, V _{GS} =0V ③
V_{SD}	Diode Forward Voltage			1.0	V	T _J = 25°C, I _S =47A, V _{GS} =0V ③
t _{rr}	Reverse Recovery Time		19	29	ns	$T_J = 25^{\circ}C, I_F = 47A, V_{DD} = 15V$
Q _{rr}	Reverse Recovery Charge		44	66	nC	di/dt = 300A/µs
t _{on}	Forward Turn-On Time	Time is dominated by parasitic Inductance				

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC} (Bottom)	Junction-to-Mounting Base ④		2.7	
R _{θJC} (Top)	Junction-to-Case ④		15	°C/W
$R_{ ext{ heta}JA}$	Junction-to-Ambient ©		35	
R _{θJA} (<10s)	Junction-to-Ambient ©		22	

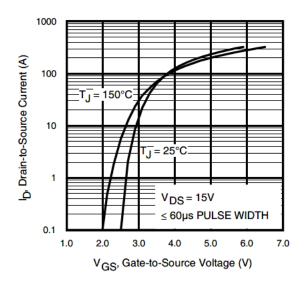


Fig 3. Typical Transfer Characteristics



Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

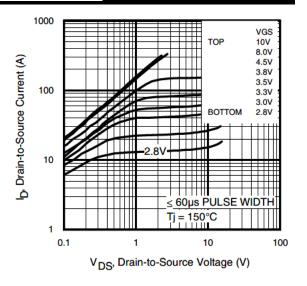


Fig 2. Typical Output Characteristics

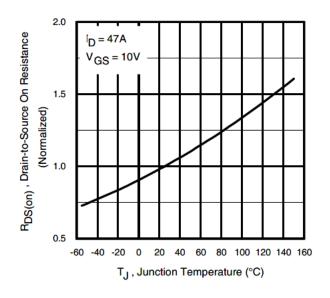


Fig 4. Normalized On-Resistance vs. Temperature

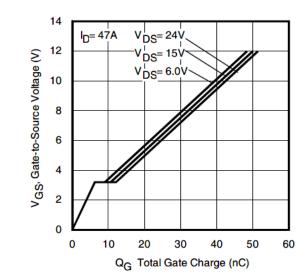


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

1000.0 I_{SD}, Reverse Drain Current (A) 100.0 T_J = 150°C 10.0 = 25°C 1.0 GS = 0V 0.1 0.2 0.8 1.6 0.4 0.6 1.0 1.2 1.4 V_{SD}, Source-to-Drain Voltage (V)

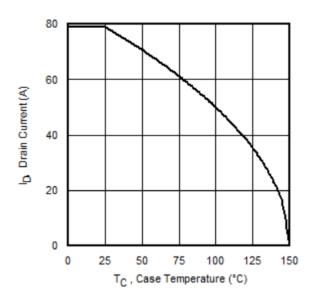
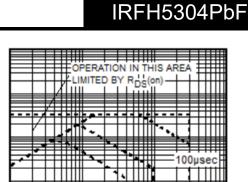
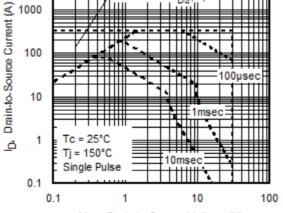




Fig 9. Maximum Drain Current vs. Case Temperature

10000

1000

V_{DS}, Drain-to-Source Voltage (V)

Fig 8. Maximum Safe Operating Area

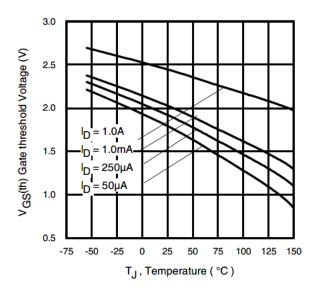


Fig 10. Drain-to-Source Breakdown Voltage

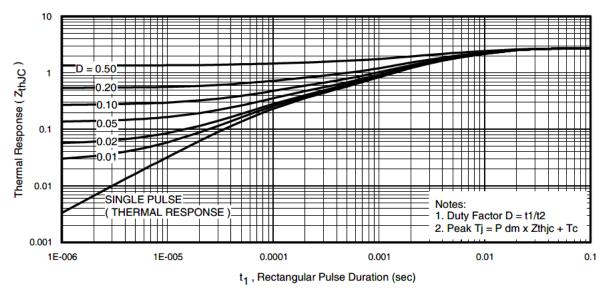


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

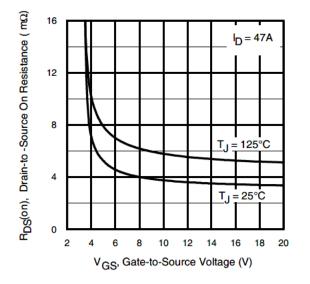


Fig 12. On-Resistance vs. Gate Voltage

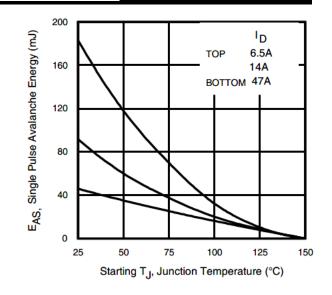


Fig 13. Maximum Avalanche Energy vs. Drain Current

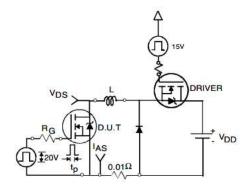


Fig 14a. Unclamped Inductive Test Circuit

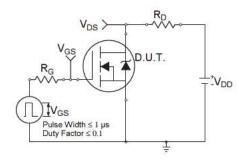


Fig 15a. Switching Time Test Circuit

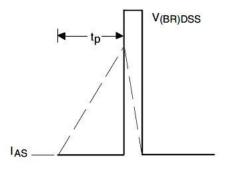


Fig 14b. Unclamped Inductive Waveforms

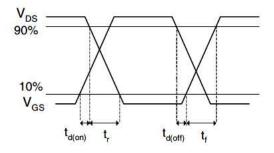


Fig 15b. Switching Time Waveforms

infineon

IRFH5304PbF

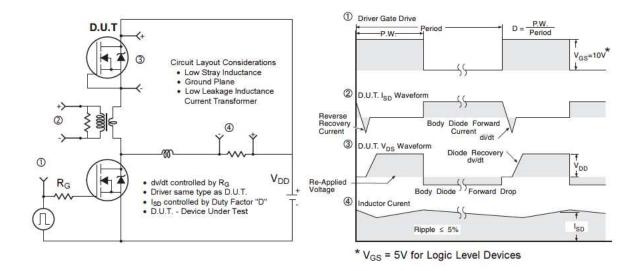
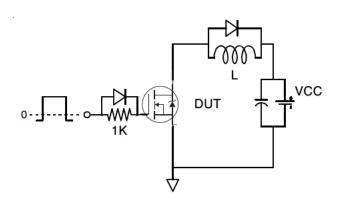
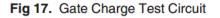




Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET[®] Power MOSFETs

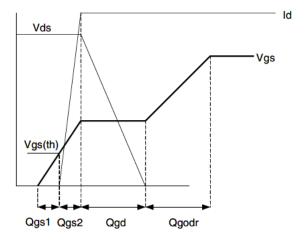
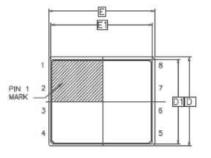
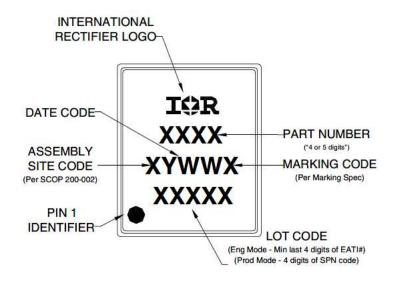



Fig 18. Gate Charge Waveform

PQFN 5x6 Outline "B" Package Details

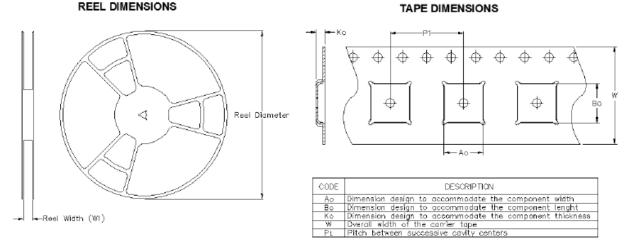
SIDE VIEW

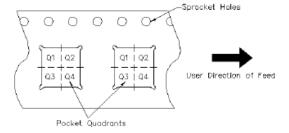

TOP VIEW

DIM	MIN	NOM	MAX	Exposed R1
A	0.800	0.830	1.05	
A1	0.000	0.020	0.050	
A2	0.580	0.630	0.680	
A3		0.254 RE	F	7
Θ	0"	10*	12'	7 8 8 - 2
Ь	0.350	0.400	0.470	D2 +
D	4.850	5.000	5.150	6 3
D1	4.675	4.750	5.000	
D2	3,700	4.210	4.300	5
e		1.270 BS		
E	5.850	6.000	6.150	
E1.	5,675	5.750	6.000	R
E2	3.380	3.480	3,760	H_+
E4	2.480	2.580	2.680	F.4
L	0.550	0.800	0.900	E-4
R	1	0.200 RE	F	E2
R1		0.100 RE	F	
R2	0.150	0.200	0.250	BOTTOM VIEW

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: <u>http://www.irf.com/technical-info/appnotes/an-1136.pdf</u>

For more information on package inspection techniques, please refer to application note AN-1154: <u>http://www.irf.com/technical-info/appnotes/an-1154.pdf</u>


PQFN 5x6 Part Marking


Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

PQFN 5x6 Tape and Reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note : All dimension are in nominal

	Package Type	Reel Diameter (Inch)	QTY	Reel Width W 1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
ſ	5x6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Q1

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

	Industrial			
Qualification Level	(per JEDEC JESD47F [†] guidelines)			
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1 (per JEDEC J-STD-020D ^{†)}		
RoHS Compliant	Yes			

† Applicable version of JEDEC standard at the time of product release.

Notes:

 $\ensuremath{\textcircled{}}$ Repetitive rating; pulse width limited by max. junction temperature.

@ Starting T_J = 25°C, L = 0.041mH, R_G = 50 $\Omega,$ I_{AS} = 47A.

③ Pulse width \leq 400 μ s; duty cycle \leq 2%.

B R_{θ} is measured at T_J of approximately 90°C.

⁽⁵⁾ When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material

© Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature as specified. For other case temperatures please refer to Diagram 9. De-rating will be required based on the actual environmental conditions.

Revision History

Date	Rev.	Comments
5/14/2014	2.1	 Updated ordering information to reflect the End-of-Life (EOL) of the mini-reel option (EOL notice #259) Update Package outline on page 7 Updated data sheet based on IR corporate template.
03/19/2015	2.2	 Updated package outline and tape and reel on pages 7 and 8
03/19/2021	2.3	 Updated datasheet based on IFX template. Updated Datasheet based on new current rating and application note :App- AN_1912_PL51_2001_180356

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie").**

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the **responsibility of customer's technical departments** to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, **Infineon Technologies' products may** not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7