International

SMPS MOSFET

V_{DSS}

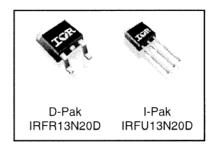
200V

PD-95354A

 I_D

13A

IRFR13N20DPbF IRFU13N20DPbF


HEXFET[®] Power MOSFET

App	lications
-----	-----------

- High frequency DC-DC converters
- Lead-Free

Benefits

- Low Gate to Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage
 and Current

R_{DS(on)} max

0.235Ω

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	13	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	9.2	A
I _{DM}	Pulsed Drain Current ①	52	
P _D @T _C = 25°C	Power Dissipation	110	W
	Linear Derating Factor	0.71	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt 3	2.2	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Absolute Maximum Ratings

Typical SMPS Topologies

• Telecom 48V input Forward Converters

Notes ① through ⑥ are on page 10 www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250 \mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.25		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.235	Ω	$V_{GS} = 10V, I_D = 8.0A$ ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
IDSS	Drain-to-Source Leakage Current		` <u> </u>	25	μA	$V_{DS} = 200V, V_{GS} = 0V$
				250		$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 30V$
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -30V

Dynamic @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g fs	Forward Transconductance	6.2		—	S	V _{DS} = 50V, I _D = 7.8A
Qg	Total Gate Charge		25	38		I _D = 7.8A
Q _{gs}	Gate-to-Source Charge		7.3	11	nC	V _{DS} = 160V
Q _{gd}	Gate-to-Drain ("Miller") Charge		12	18		V _{GS} = 10V, ④
t _{d(on)}	Turn-On Delay Time		11			V _{DD} = 100V
t _r	Rise Time		27		ns	I _D = 7.8A
t _{d(off)}	Turn-Off Delay Time		17			$R_G = 6.8\Omega$
t _f	Fall Time		10			V _{GS} = 10V ④
Ciss	Input Capacitance		830			$V_{GS} = 0V$
Coss	Output Capacitance		140			V _{DS} = 25V
Crss	Reverse Transfer Capacitance		35		pF	f = 1.0MHz
Coss	Output Capacitance		990			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		57			$V_{GS} = 0V, V_{DS} = 160V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		59			$V_{GS} = 0V$, $V_{DS} = 0V$ to 160V \textcircled{S}

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		130	mJ
I _{AR}	Avalanche Current®		7.8	A
E _{AR}	Repetitive Avalanche Energy ^①		11	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case		1.4	
R _{0JA}	Junction-to-Ambient (PCB mount)*		50	°C/W
R _{0JA}	Junction-to-Ambient		110	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions							
Is	Continuous Source Current				13 A	MOSFET symbol							
	(Body Diode)			13		showing the							
I _{SM}	Pulsed Source Current		50			52	50	50	50	50	50		integral reverse
	(Body Diode) ①	5	52	52	p-n junction diode.								
V _{SD}	Diode Forward Voltage			1.3	V	$T_J=25^{\circ}C,\ I_S=7.8A,\ V_{GS}=0V \textcircled{9}$							
t _{rr}	Reverse Recovery Time		140	210	ns	$T_J = 25^{\circ}C, I_F = 7.8A$							
Qrr	Reverse RecoveryCharge		750	1120	nC	di/dt = 100A/µs 善							
t _{on}	Forward Turn-On Time	Intrinsic tum-on time is negligible (tum-on is dominated by L_S+L_D)											

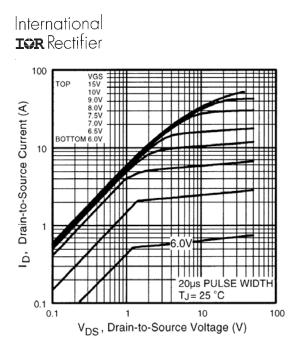


Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

IRFR/U13N20DPbF

Fig 2. Typical Output Characteristics

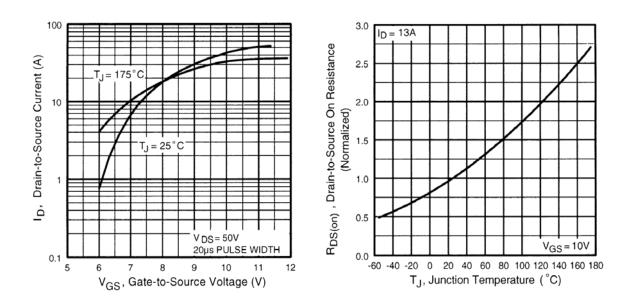
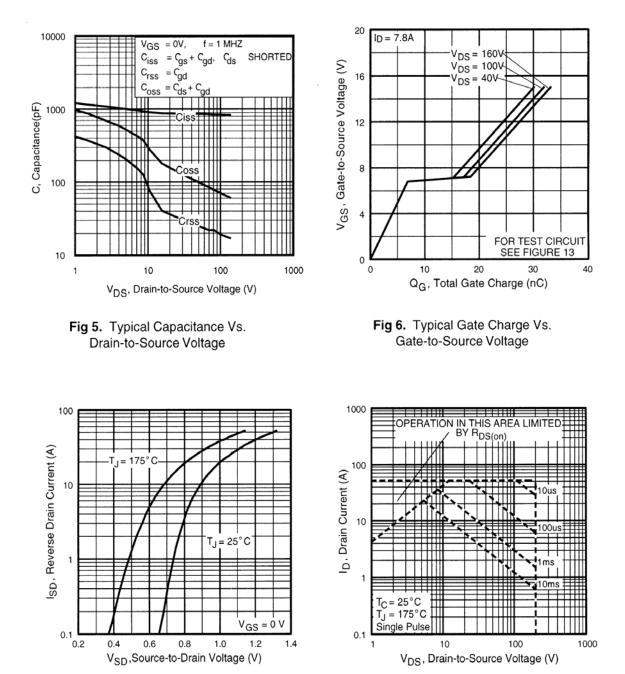



Fig 4. Normalized On-Resistance Vs. Temperature

International

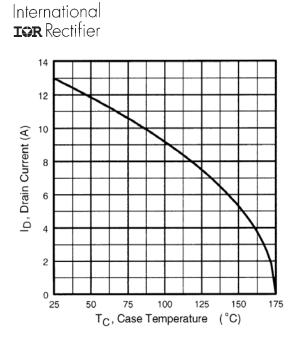
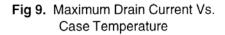




Fig 8. Maximum Safe Operating Area

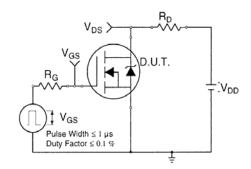


Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

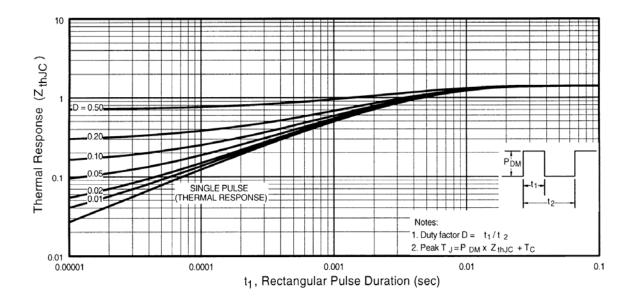
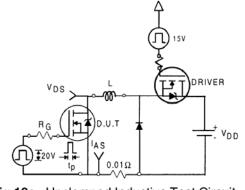
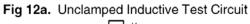




Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com

International

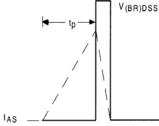


Fig 12b. | Unclamped Inductive Waveforms

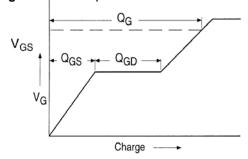


Fig 13a. Basic Gate Charge Waveform

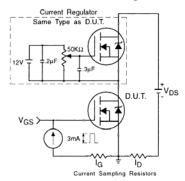


Fig 13b. Gate Charge Test Circuit 6

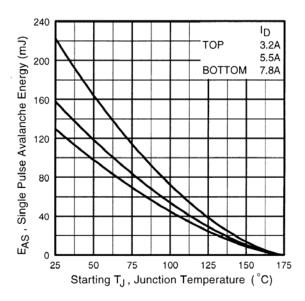
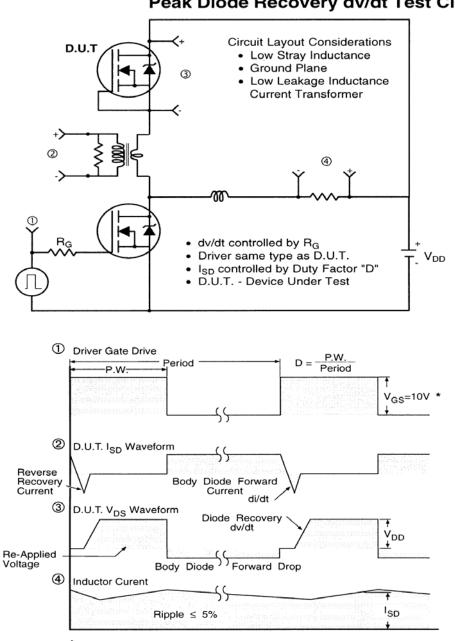
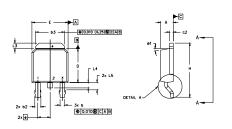
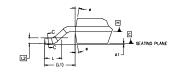



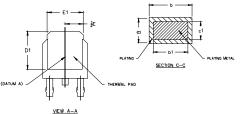
Fig 12c. Maximum Avalanche Energy Vs. Drain Current

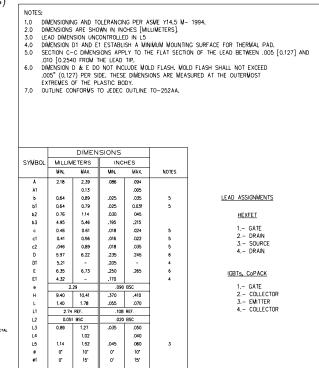
Peak Diode Recovery dv/dt Test Circuit

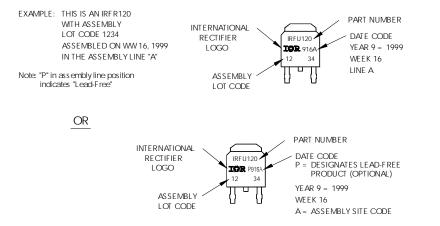

* V_{GS} = 5V for Logic Level Devices


Fig 14. For N-Channel HEXFET® Power MOSFETs

International


D-Pak (TO-252AA) Package Outline

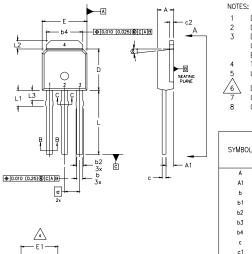

Dimensions are shown in millimeters (inches)



DETAIL A ROTATED 90

D-Pak (TO-252AA) Part Marking Information

International **TOR** Rectifier


Ф

VIEW A-A

IRFR/U13N20DPbF

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

(c)

0.005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.

LEAD DIMENSION UNCONTROLLED IN L3.

DIMENSION 61, 63 APPLY TO BASE METAL ONLY. OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA.

DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.

dimensions are shown in Millimeters [inches]. Dimension D & E do not include Mold Flash. Mold Flash shall not exceed

NOTES

4

3,4

3, 4

4

4

5

CONTROLLING DIMENSION : INCHES.

DIMENSIONS

INCHES

MAX

.094

0.045

0.035

0.031

0.045

0,041

0.215

0.024

0.022

0.035

0.245

0.265

0.380

0.090

0.050

0.060

15'

MIN.

0.086

0.035

0.025

0.025

0.030

0,030

0,195

0.018

0.016

0.018

0.235

0,205

0.250

0,170

0.350

0.075

0.035

0,045

0.

0.090 BSC

MILLIMETERS

MAX,

2.39

1,14

0,89

0,79

1,14

1.04

5,46

0.61

0,56

0.86

6.22

6.73

9.60

2.29

1,27

1.52

15

MIN.

2,18

0.89

0.64

0,64

0.76

0,76

5,00

0.46

0.41

.046

5.97

5.21

6,35

4.32

8.89

1.91

0.89

1,14

ď

2.29

c2

D

D1

Ε

F1

е

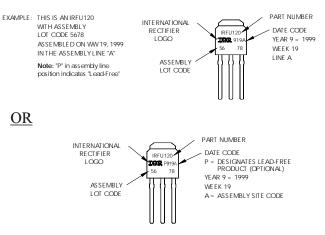
L L1

L2

L3

ø1

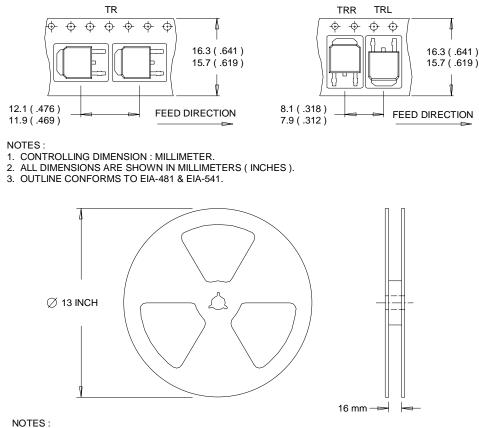
LEAD ASSIGNMENTS


HEXFET 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information

-(b, b2)

-b1, b3·


SECTION A-A

International

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

1. OUTLINE CONFORMS TO EIA-481.

Data and specifications subject to change without notice.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/05 10 www.irf.com Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P54TU,LF SSM6P69NU,LF DMP22D4UFO-7B