
IRLB4132PbF

Application

- Optimized for UPS/Inverter Applications
- Low Voltage Power Tools

Benefits

- Best in Class Performance for UPS/Inverter Applications
- Very Low RDS(on) at 4.5V VGS
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current
- Lead-Free, RoHS Compliant

G	D	S
Gate	Drain	Source

Base part number	Packago Typo	Standard Pack		Orderable Part Number	
Dase part number	Fackage Type	Form	Quantity	Orderable Fait Number	
IRLB4132PbF	TO-220AB	Tube	50	IRLB4132PbF	

Absolute Maximum Rating

Symbol	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	30	V
V _{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	150④	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	100	A
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	78	
I _{DM}	Pulsed Drain Current ①	620	
P _D @T _C = 25°C	Maximum Power Dissipation 6	140	W
P _D @T _C = 100°C	Maximum Power Dissipation 6	68	W
	Linear Derating Factor	0.90	W/°C
TJ	Operating Junction and		
T _{STG}	Storage Temperature Range	-55 to + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Junction-to-Case ©		1.11	
$R_{ ext{ heta}CS}$	Case-to-Sink, Flat Greased Surface	0.50		°C/W
$R_{ heta JA}$	Junction-to-Ambient ©		62	

Notes ① through ⑦ are on page 8

Static @ T _J = 25°C (unless otherwise specified)							
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_{D} = 250 \mu A$	
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temp. Coefficient		17		mV/°C	Reference to 25°C, I_D = 1mA \oplus	
Р	Otatia Davia ta Osara Os Davistarea		2.5	3.5		V _{GS} = 10V, I _D = 40A ③	
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.5	4.5	mΩ	V _{GS} = 4.5V, I _D = 32A ③	
V _{GS(th)}	Gate Threshold Voltage	1.35	1.8	2.35	V	$(-1)^{-1}$	
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Coefficient		-7.7		mV/°C	$V_{DS} = V_{GS}, I_D = 100 \mu A$	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	V _{DS} =24 V, V _{GS} = 0V	
USS				100	μΛ	V_{DS} =24V, V_{GS} = 0V, T_{J} =125°C	
	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V	
I _{GSS}	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V	
gfs	Forward Transconductance	190			S	V _{DS} = 15V, I _D =32A	
Qg	Total Gate Charge		36	54			
Q _{gs1}	Pre-Vth Gate-to-Source Charge		9.1			V _{DS} = 15V	
Q _{gs2}	Post-Vth Gate-to-Source Charge		4.2		nC	V _{GS} = 4.5V	
Q_{gd}	Gate-to-Drain Charge		13			I _D = 32A	
Q _{godr}	Gate Charge Overdrive		13				
Q _{sw}	Switch Charge (Qgs2 + Qgd)		17.2				
Q _{oss}	Output Charge		21		nC	V _{DS} = 16V, V _{GS} = 0V	
R _G	Gate Resistance		0.85	1.5	Ω		
t _{d(on)}	Turn-On Delay Time		23			V _{DD} = 15V	
t _r	Rise Time		92		ns	I _D = 32A	
t _{d(off)}	Turn-Off Delay Time		25			R _G = 1.8Ω	
t _f	Fall Time		36			V _{GS} = 4.5V③	
C _{iss}	Input Capacitance		5110			V _{GS} = 0V	
C _{oss}	Output Capacitance		960		pF	V _{DS} = 15V	
C _{rss}	Reverse Transfer Capacitance		440			<i>f</i> = 1.0MHz	

Statio @ T = 25°C (unloss atherwise aposition)

Avalanche Characteristics

EAS (Thermally limited)	Single Pulse Avalanche Energy ②	310	ml
E _{AS (tested)}	Single Pulse Avalanche Energy Tested Value 🗇	900	mJ
I _{AR}	Avalanche Current ①	32	А
E _{AR}	Repetitive Avalanche Energy ①	14	mJ

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current (Body Diode)			150④	•	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			620	A	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			1.0	V	T_J = 25°C, I_S = 32A, V_{GS} = 0V (3)
t _{rr}	Reverse Recovery Time		29	44	ns	$T_J = 25^{\circ}C I_F = 32A ,V_{DD}=15V$
Q _{rr}	Reverse Recovery Charge		49	74	nC	di/dt = 200A/µs ③

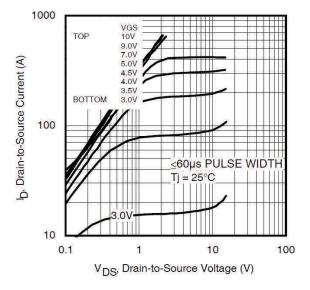
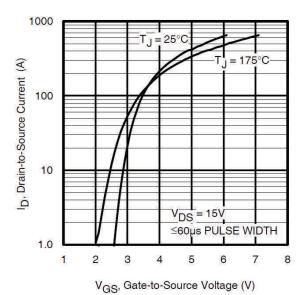



Fig 1. Typical Output Characteristics

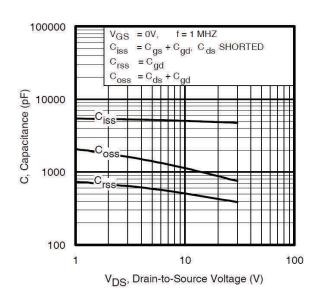


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

IRLB4132PbF

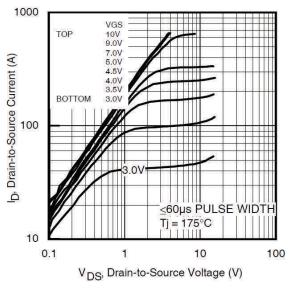


Fig 2. Typical Output Characteristics

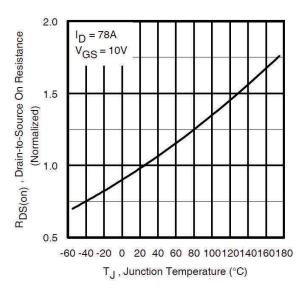


Fig 4. Normalized On-Resistance vs. Temperature

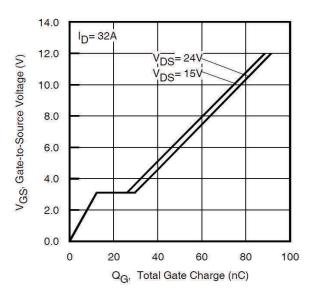
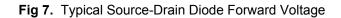



Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

1000 = 175°C ISD, Reverse Drain Current (A) 100 10 $T_J = 25^{\circ}C$ 1 V_{GS} = 0V 0.1 0.0 3.0 0.5 1.0 1.5 2.0 2.5 V_{SD}, Source-to-Drain Voltage (V)

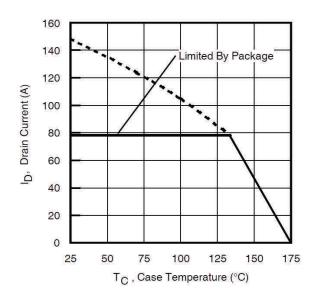


Fig 9. Maximum Drain Current vs. Case Temperature

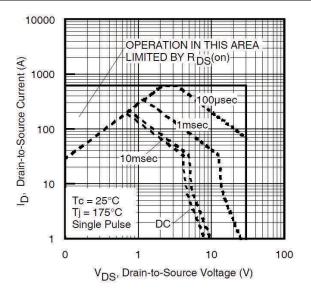


Fig 8. Maximum Safe Operating Area

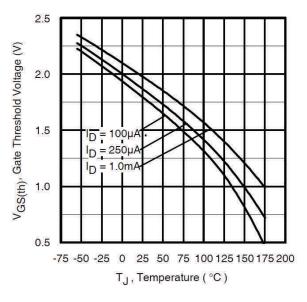


Fig 10. Threshold Voltage vs. Temperature

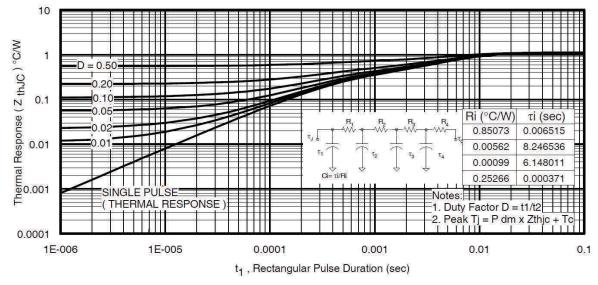


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRLB4132PbF

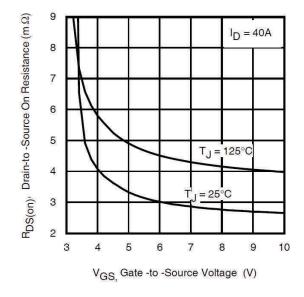


Fig 12. Typical On-Resistance vs. Gate Voltage

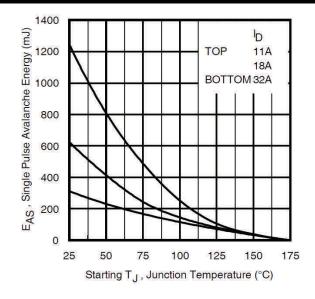


Fig 13. Maximum Avalanche Energy vs. Drain Current

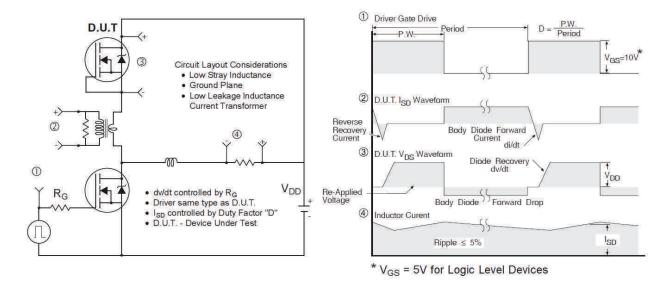


Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET[®] Power MOSFETs

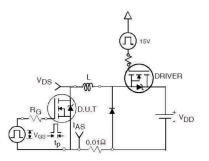


Fig 15a. Unclamped Inductive Test Circuit

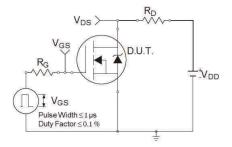


Fig 16a. Switching Time Test Circuit

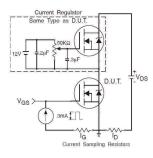


Fig 17a. Gate Charge Test Circuit

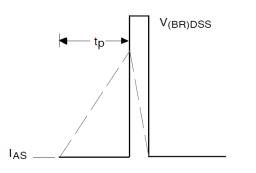


Fig 15b. Unclamped Inductive Waveforms

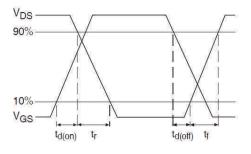
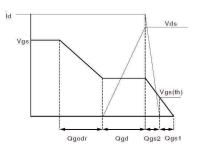
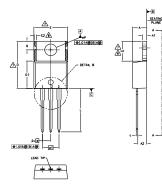
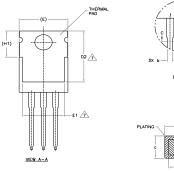
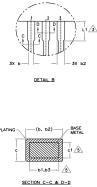


Fig 16b. Switching Time Waveforms


Fig 17b. Gate Charge Waveform

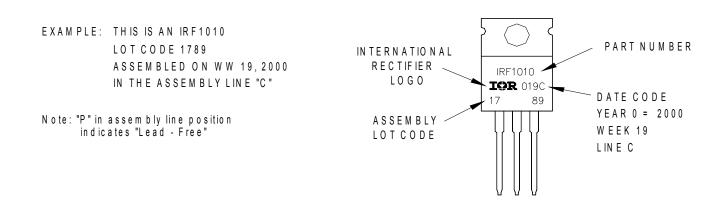
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994. DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]. 1.-
- 2 -
- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1 3.-
- DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE 4.-MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 5. DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- 6.-CONTROLLING DIMENSION : INCHES.
- 7,-THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED. 8.-
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE. 9.-

	DIMENSIONS				
SYMBOL	· MILLIMETERS		INC		
	Min.	MAX.	MIN.	MAX.	NOTES
A	3.56	4.83	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2.03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
b1	0.38	0.97	.015	.038	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
с	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
Е	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
е	2.54		.100	BSC	
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	3.56	4.06	.140	.160	3
øР	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS


HEXFET 1.- Gate 2.- Drain 3.- Source

IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

TO-220AB packages are not recommended for Surface Mount Application.

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) [†]		
Moisture Sensitivity Level	TO-220AB	N/A	
RoHS Compliant	Yes		

† Applicable version of JEDEC standard at the time of product release.

Notes:

- $\ensuremath{\mathbb O}$ Repetitive rating; pulse width limited by max. junction temperature.
- $\ensuremath{{}^{\circ}}$ Limited by T_{Jmax}, starting T_J = 25°C, L = 0.61mH, R_G = 25 Ω , I_{AS} = 32A.
- ③ Pulse width \leq 400µs; duty cycle \leq 2%.
- ④ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 78A.
- S When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques Refer to application note #AN-994.
- $\ensuremath{{}^{\circ}}$ R_{θ} is measured at T_J approximately 90°C.
- \odot Starting T_J =25°C, L=0.50mH, R_G = 25 Ω , I_{AS} =60A, V_{DD} =25V. (Statistical Limit)

Trademarks of Infineon Technologies AG

µHVIC[™], µIPM[™], µFFC[™], AU-ConvertIR[™], AURIX[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], CoolDP[™], CoolGaN[™], COOLIR[™], CoolMOS[™], CoolSET[™], CoolSiC[™], DAVE[™], DI-POL[™], DirectFET[™], DrBlade[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPACK[™], EconoPIM[™], EiceDRIVER[™], eupec[™], FCOS[™], GaNpowIR[™], HEXFET[™], HITFET[™], HybridPACK[™], iMOTION[™], IRAM[™], ISOFACE[™], IsoPACK[™], LEDrivIR[™], LITIX[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OPTIGA[™], OptiMOS[™], ORIGA[™], PowIRaudio[™], PowIRStage[™], PrimePACK[™], PrimeSTACK[™], PROFET[™], PRO-SIL[™], RASIC[™], REAL3[™], SmartLEWIS[™], SOLID FLASH[™], SPOC[™], StrongIRFET[™], SupIRBuck[™], TEMPFET[™], TRENCHSTOP[™], TriCore[™], UHVIC[™], XHP[™], XMC[™]

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie")**.

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the **responsibility of customer's technical departments** to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, **Infineon Technologies' products may** not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7