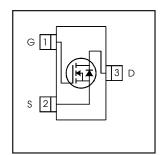
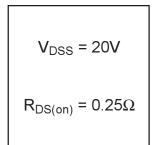
International IOR Rectifier

- Generation V Technology
- Ultra Low On-Resistance
- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- Lead-Free
- Halogen-Free


Description


Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

A customized leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

IRLML2402GPbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	1.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	0.95	A
I _{DM}	Pulsed Drain Current ①	7.4	
P _D @T _A = 25°C	Power Dissipation	540	mW
	Linear Derating Factor	4.3	mW/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
dv/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns
$T_{J_i}T_{STG}$	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient ④		230	°C/W

IRLML2402GPbF

International IOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	V _{GS} = 0V, I _D = 250μA
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.024		V/°C	Reference to 25°C, I _D = 1mA
Б	Static Ducin to Service On Besintance			0.25		V _{GS} = 4.5V, I _D = 0.93A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.35	Ω	V _{GS} = 2.7V, I _D = 0.47A ③
V _{GS(th)}	Gate Threshold Voltage	0.70			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
g fs	Forward Transconductance	1.3			S	V _{DS} = 10V, I _D = 0.47A
I _{DSS}	Drain-to-Source Leakage Current			1.0		V _{DS} = 16V, V _{GS} = 0V
יטפטי	Brain-to-obtroe Leakage Garrent			25	μA	V _{DS} = 16V, V _{GS} = 0V, T _J = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	$V_{GS} = -12V$
IGSS	Gate-to-Source Reverse Leakage			100	11/	V _{GS} = 12V
Qg	Total Gate Charge		2.6	3.9		$I_D = 0.93A$
Q _{gs}	Gate-to-Source Charge		0.41	0.62	nC	V _{DS} = 16V
Q _{gd}	Gate-to-Drain ("Miller") Charge		1.1	1.7		V _{GS} = 4.5V, See Fig. 6 and 9 ③
t _{d(on)}	Turn-On Delay Time		2.5			V _{DD} = 10V
t _r	Rise Time		9.5			$I_D = 0.93A$
t _{d(off)}	Turn-Off Delay Time		9.7		ns ·	$R_G = 6.2\Omega$
t _f	Fall Time		4.8			R_D = 11 Ω , See Fig. 10 ③
C _{iss}	Input Capacitance		110			V _{GS} = 0V
C _{oss}	Output Capacitance		51		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		25			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.54		MOSFET symbol
	(Body Diode)			0.54	Α	showing the
I _{SM}	Pulsed Source Current			7.4		integral reverse
	(Body Diode) ①		— — 7.4	Ī	p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 0.93$ A, $V_{GS} = 0$ V ③
t _{rr}	Reverse Recovery Time		25	38	ns	T _J = 25°C, I _F = 0.93A
Q _{rr}	Reverse RecoveryCharge		16	24	nC	di/dt = 100A/µs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} @ I_{SD} \le 0.93A, & di/dt \le 90A/\mu s, & V_{DD} \le V_{(BR)DSS}, \\ & T_{J} \le 150 \mbox{°C} \end{tabular}$

International **TOR** Rectifier

IRLML2402GPbF

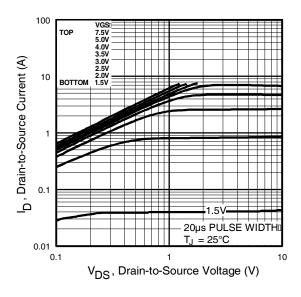


Fig 1. Typical Output Characteristics

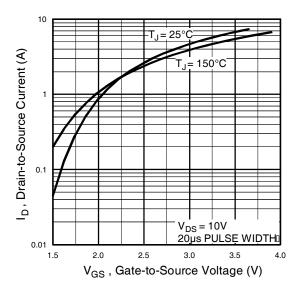


Fig 3. Typical Transfer Characteristics

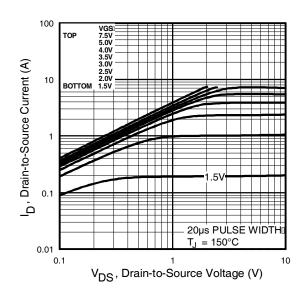
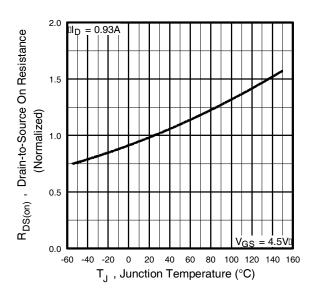
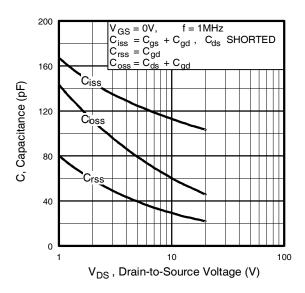




Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

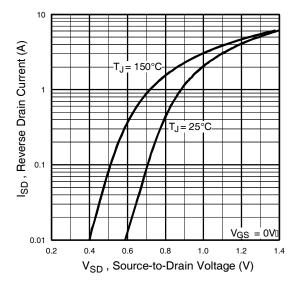
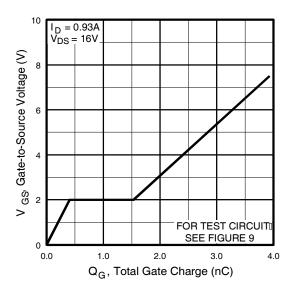



Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

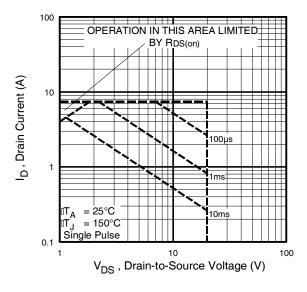


Fig 8. Maximum Safe Operating Area

International **TOR** Rectifier

4.5V QGS QGD QGD

Fig 9a. Basic Gate Charge Waveform

Charge

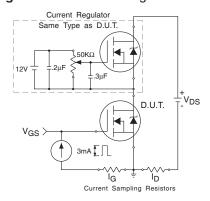


Fig 9b. Gate Charge Test Circuit

IRLML2402GPbF

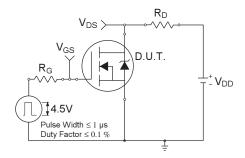


Fig 10a. Switching Time Test Circuit

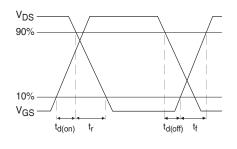


Fig 10b. Switching Time Waveforms

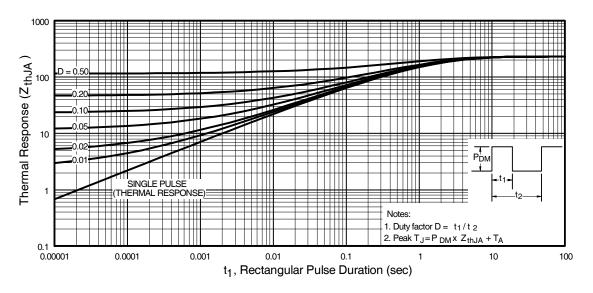
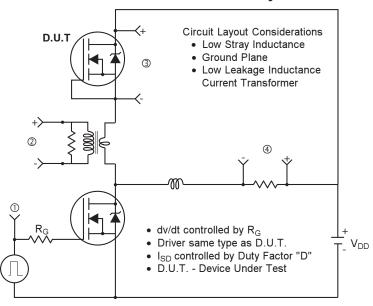
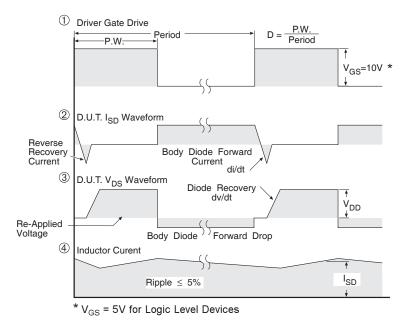
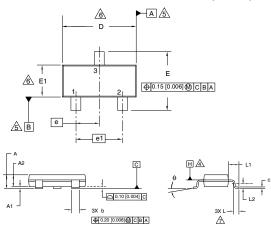



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

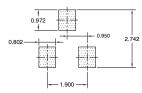
Peak Diode Recovery dv/dt Test Circuit




Fig 12. For N-Channel HEXFETS

International IOR Rectifier

IRLML2402GPbF


Micro3 (SOT-23) (Lead-Free) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS					
SYMBOL	MILLIMI	ETERS	INCHES		
STIVIBOL	MIN	MAX	MIN	MAX	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.0004	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E1	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.40	0.60	0.016	0.024	
L1	0.54	REF	0.021	REF	
L2	0.25	BSC	0.010	BSC	
0	0	8	0	8	

Recommended Footprint

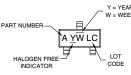
NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
 3. CONTROLLING DIMENSION: MILLIMETER.

 ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.

 ADATUM A AND B TO BE DETERMINED AT DATUM PLANE H.


 DIMENSIONS D AND E1 ARE MEASURED AT DATUM PLANE H. DIMENSIONS DOES
 NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD PLASH, MOLD PROTRUSIONS NOT INCLUDE MOLD PHOTHOSIONS OH INTERLEAD FLASH, MOLD PHOTHOS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

 DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-236 AB.

Micro3 (SOT-23 / TO-236AB) Part Marking Information

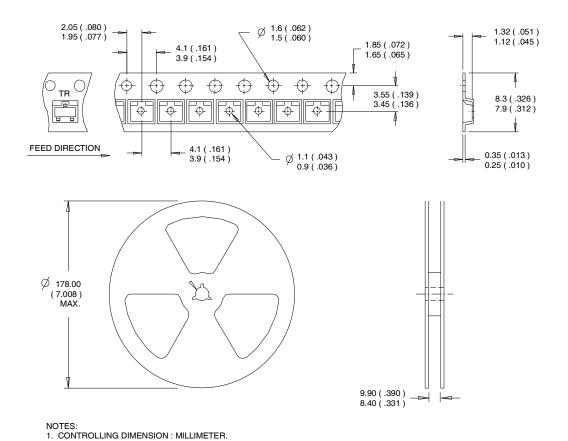
YEAR	Υ	WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5		
2006	6		
2007	7		
2008	8	1	1
2009	9	7	1
2010	0	24	X
		25	Υ
		26	7

PART NUMBER CODE REFERENCE:

- A = IRLML2402 B =IRLML2803 C = IRLML2402 D = IRLML5103 E = IRLML6402 F = IRI MI 6401 G = IRLML2502 H = IRLML5203
- Note: A line above the work week (as shown here) indicates Lead-free

W = (27-52) IF PRECEDED BY A LETTER						
	YEAR	Υ	WORK WEEK	W		
	2001	Α	27	Α		
	2002	В	28	В		
	2003	С	29	С		
	2004	D	30	D		
	2005	E				
	2006	F				
	2007	G				
	2008	Н	1	1		
	2009	J	7	1		
	2010	K	50	X		
			51	Υ		
			52	Z		

Note: For the most current drawing please refer to IR website at http://www.irf.com/package www.irf.com


IRLML2402GPbF

International

TOR Rectifier

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 12/2011

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B