

Motor Drive Reference Board For Mid Power Applications

Description

IRMD808 is a reference board including three half-bridge modules for motor drive application. The kit features and demonstrates International Rectifier's intelligent power module (IPM) technology in an innovative PQFN package.

Features

µIPM™ - Intelligent Power Module (IPM)

- Low RDS(on) Trench MOSFETs (500V)
- Integrated gate drivers and bootstrap functionality
- Overcurrent and under-voltage lockout protection
- Fault diagnostic output
- Optimized dV/dt for loss and EMI trade offs
- IPM Isolation 1500VRMS min

Product Summary

- FR4 based 1oz copper two-layer PCB
- Up to 280W motor power range (Note1)
- Possibility to easy change between 3 Leg shunt to single shunt configuration
- Compatible with the following μIPM modules: IRSM808-105MH 10A / 0.8Ω , 500V IRSM807-105MH 10A / 0.8Ω , 500V

Note1: Determined by rating of mounted µIPM

120 x 85 mm

Safety Precautions

In addition to the precautions listed throughout this manual, please read and understand the following statements regarding hazards associated with development system.

ATTENTION: The **ground potential** of the IRMD808 system is biased to a negative DC bus voltage potential. When measuring voltage waveform by oscilloscope, the scope ground needs to be isolated. Failure to do so may result in personal injury or death. Darkened display LEDs is not an indication that capacitors have discharged to safe voltage levels.

ATTENTION: Only personnel familiar with the drive and associated machinery should plan or implement the installation, start-up, and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: The surface temperatures of the drive may become hot, which may cause injury.

ATTENTION: IRMD808 system contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference applicable ESD protection handbook and guideline.

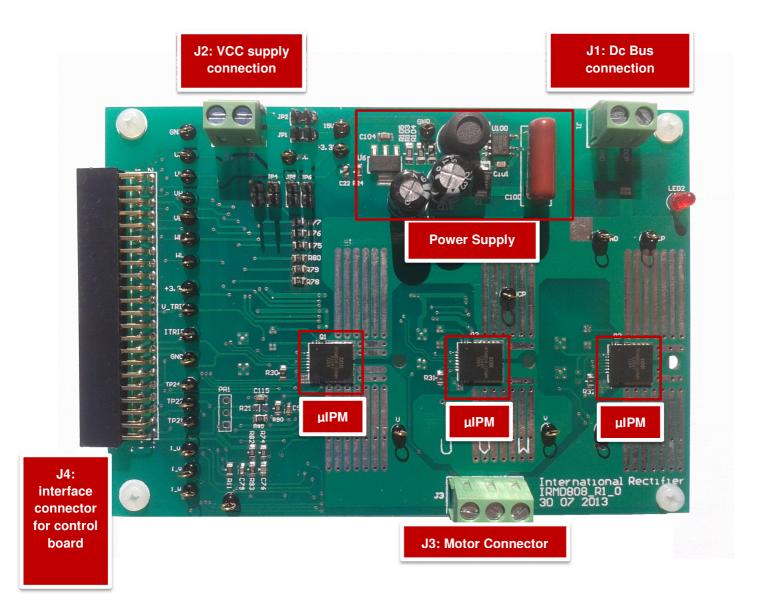
ATTENTION: An incorrectly applied or installed drive can result in component damage or reduction in product life. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.

Preliminary Datasheet

IRMD808

ATTENTION: Remove and lock out power from the drive before you disconnect or reconnect wires or perform service. Wait three minutes after removing power to discharge the bus voltage. Do not attempt to service the drive until bus voltage has discharged to zero. Failure to do so may result in bodily injury or death.

ATTENTION: Do not connect power factor correction capacitors to output terminals U, V, and W. Doing so may result in equipment damage or bodily injury.


ATTENTION: Debris When Unpacking

IRMD808 system is shipped with packing materials that need to be removed prior to installation. Failure to remove all debris and packing materials which are unnecessary for system installation may result in overheating or abnormal operating condition.

Hardware Description

A top view of the IRMD808 board is shown below.

PCB

The 120 x 85mm board has two layers with 1oz (~35 μ m) copper each.

Isolation Boundary

Note that the ground potential of the IRMD808 system is biased to a negative DC bus voltage potential. The user should keep in mind that most parts of the hardware have negative DC bus ground and it may be necessary to isolate the scope when waveforms are measured. Refer to the IRMD808 schematics for more information.

Connector definition

J1 - Dc Bus connection

Pin	Name	Description
1	GND	Connected to ground
2	DCP	Connected to Dc Bus positive voltage

J2 - Vcc supply connection

Pin	Name	Description	
1	VCC	Connected to positive supply voltage to feed the uIPM – use only removing jumper JP1 (Note2)	
2	GND	Connected to ground	

Note2: in order to feed the uIPMs with the 15V supply generated on the board, pins 1 and 2 of jumper JP1 must be shorted and no external supply has to be connected to Vcc

J3 - Motor connector

Pin	Name	Description
U	Phase U voltage	Connected to motor phase U
V	Phase V voltage	Connected to motor phase V
W	Phase W voltage	Connected to motor phase W

J4 - Interface connector for control board

Pin	Name	Description
1	PWMUH	PWM input signal for phase U high side Mosfet (Note3)
2	GND	Ground
2	PWMUL	PWM input signal for phase U low side Mosfet (Note3)
4	GND	Ground

5	PWMVH	PWM input signal for phase V high side Mosfet (Note3)
6	3.3V	On board 3.3V supply
7	PWMVL	PWM input signal for phase V low side Mosfet (Note3)
8	3.3V	On board 3.3V supply
9	PWMWH	PWM input signal for phase W high side Mosfet (Note3)
10	I_U	Leg U shunt voltage in 3 leg shunt configuration / single shunt voltage in single shunt configuration
11	PWMW	PWM input signal for phase W low side Mosfet (Note3)
12	GND	Ground
13	FLT/EN	Input/Output signal – active low
14	DCPCONN	DcBus positive voltage, available on Pin14 only if jumper JP2 is inserted (Note4)
15	GND	Ground
16	N.C.	Not Connected
17	N.C.	Not Connected
18	GND	Ground
19	N.C.	Not Connected
20	DCP_FB	DcBus positive voltage, scaled in 0-3.3V range by a voltage divider
21	N.C.	Not Connected
22	N.C.	Not Connected
23	GND	Ground
24	3.3V	On board 3.3V supply
25	N.C.	Not Connected
26	GND	Ground

27	N.C.	Not Connected	
28	GND	Ground	
29	V TRIP	Current comparator input signal for I_TRIP generation	
30	GND	Ground	
31	ITRIP	Input signal from current comparator – active high	
32	N.C.	Not Connected	
33	USENSE	Phase U voltage value scaled in 0-3.3V range by a voltage divider	
34	VSENSE	Phase V voltage value scaled in 0-3.3V range by a voltage divider	
35	WSENSE	Phase W voltage value scaled in 0-3.3V range by a voltage divider	
36	3.3V	On board 3.3V supply	
37	I_V	Leg V shunt voltage in 3 leg shunt configuration	
38	GND	Ground	
39	N.C.	Not Connected	
40	GND	Ground	
41	ı w	Leg W shunt voltage in 3 leg shunt configuration	
42	GND	Ground	
43	COMP_OUT	Comparator output for phase current shaping	
44	DIG_VTH	Digital input signal for threshold generation on current shaping comparator	

Note3: can be active low/high depending on uIPM. Please refer to board schematics and use:

- pin1 and pin2 of jumpers JP3, JP4 must be shorted to pull up/down respectively high side inputs signals (PWMUH, PWMWH)
- pin1 and pin2 of jumpers JP5, JP6 must be shorted to pull up/down respectively low side inputs signals (PWMUL, PWMVL, PWMWL)

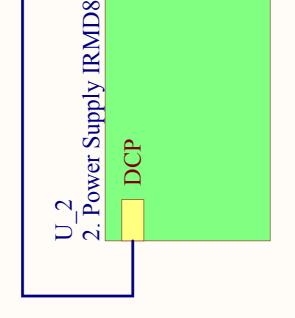
Note4: pin1 and pin2 of jumper JP2 must be shorted to have the DC bus positive voltage on Pin14. Please consider this is a high voltage pin (up to 500V, depending on rating of mounted uIPM)

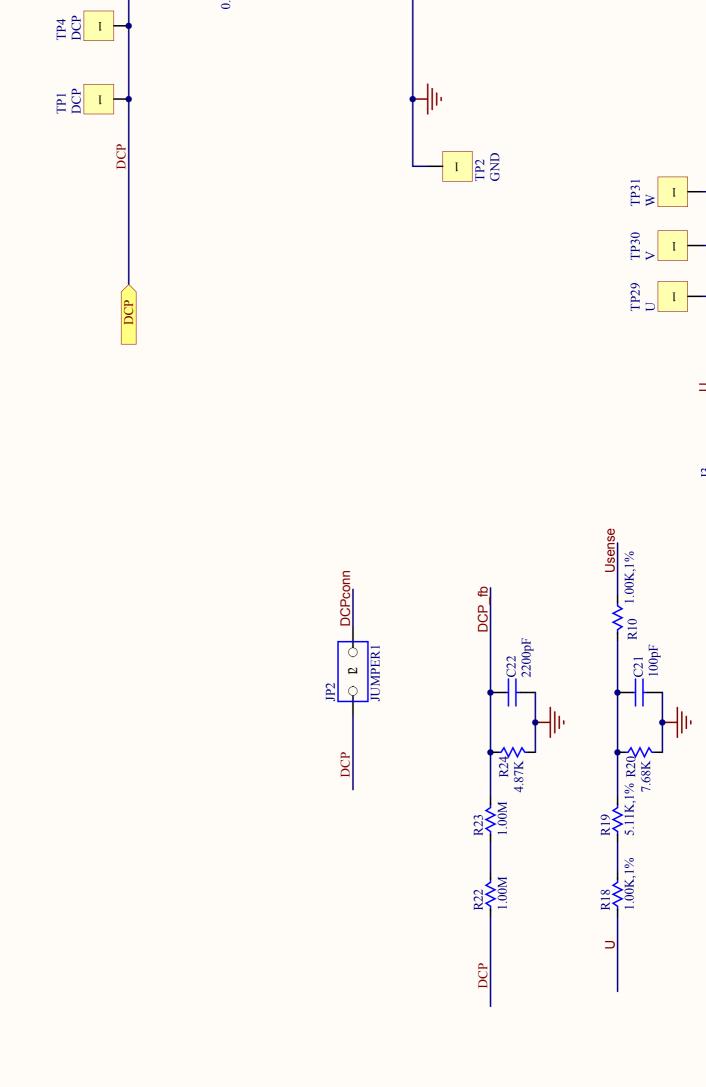
Specifications

Parameters	Values	Conditions
Output Power		
Watts (Note5)	180W	IRSM808-105MH
		IRSM807-105MH IRSM808-105MH
Current (Note5)	1.1A*	IRSM807-105MH
		*rms, Fc=16kHz, 2-phase PWM, ∆Tca=70C, Ta=25C
DC bus voltage		
Maximum DC bus voltage	400V	With 500V modules mounted
Minimum DC bus voltage	40V**	**Only if on board generated 15V supply is used.
Current feedback		
Current sensing device	0.5 Ω	Three leg shunt configuration is set. To implement single shunt, remove RS2 and RS3
RS1,RS2, RS3	0.5 12	and include R99 and R98 resistors (0 Ω)
Protection		
Output current trip level	1.2Apk	Configure by changing shunt resistors, R82 and/or R83 as indicated on schematics
Critical over voltage trip	380V	
Over voltage trip	360V	
Under voltage trip	120V	
Power Device		
IRSM807/808-xyMH	32L μIPM	x = DC current rating y = 4 for 250V, y = 5 for 500V
		y = 4 101 200 v, y = 0 101 000 v
On board power supply		
15V	15V+/-5%, Max 20mA	Used for µIPM gate drive power
3.3V	3.3V+/-5%, Max 50mA	Used for interface signals with control board and
		alarm signal (I_TRIP)
PCB		
Material	FR4, 1.6mm thickness	
Dimension	Copper thickness=1oz (35um)	
	120mm x 85mm	
System environment	0 to 70°C	059/ DH may (Non condensing)
Ambient temperature	0 to 70°C	95% RH max. (Non-condensing)

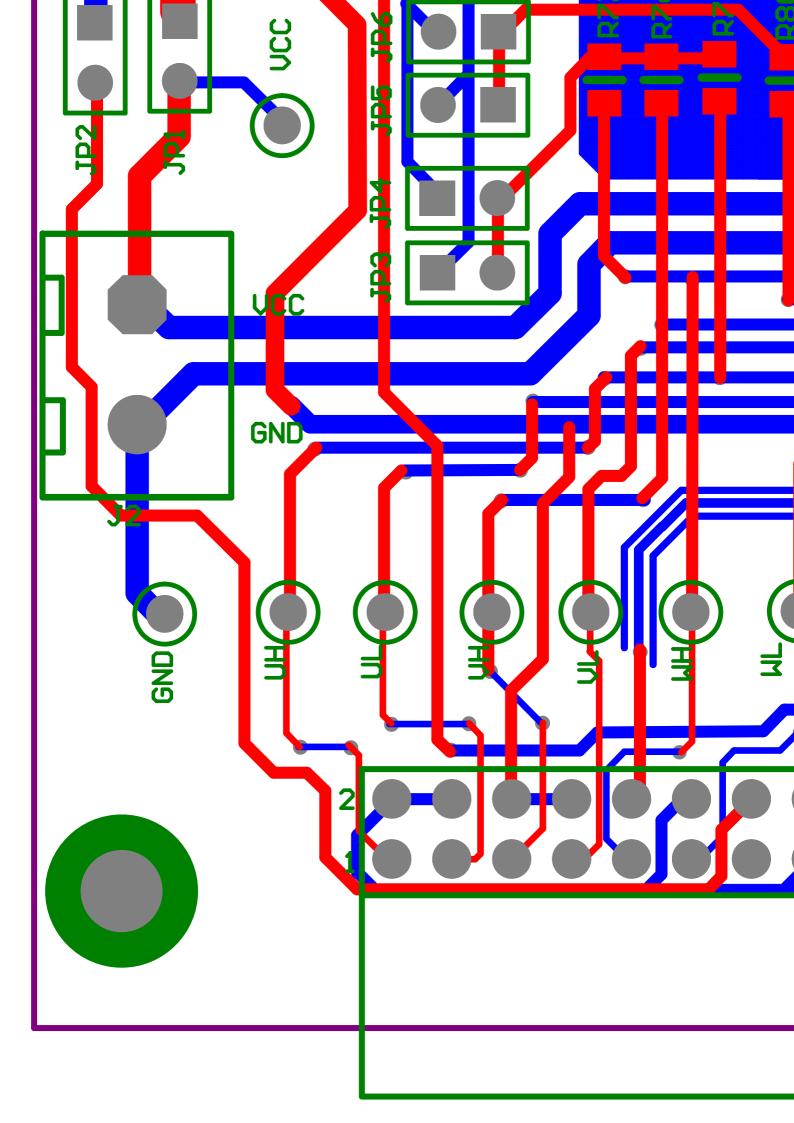
Note5: please refer to IRSM808/807_xyMH datasheet for data about maximum current and power, changing Fc, modulation, ΔT ca, use of a heat sink.

IRMD808


Revision History



Data and Specifications are subject to change without notice IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105


TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ27411EVM-G1A BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL