Features

- Floating channel designed for bootstrap operation
- Fully operational to +600V
- Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 5V to 20V
- Undervoltage lockout for both channels
- 3.3V, 5V and 15V input logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- High side output in phase with input
- Internal 450ns dead-time
- Lower di/dt gate driver for better noise immunity
- Shut down input turns off both channels
- Leadfree, RoHS compliant

Typical Applications

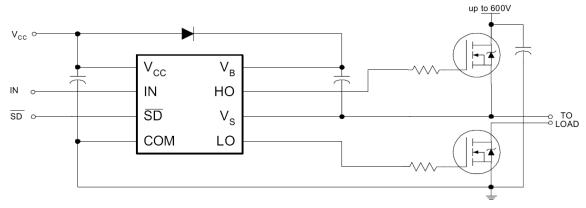
- Appliance motor drives
- Servo drives
- Micro inverter drives
- General purpose three phase inverters

HALF-BRIDGE DRIVER

Product Summary

V _{OFFSET}	600V Max
V _{OUT}	5V – 20V
I _{o+} & I _{o-} (typical)	200mA / 350mA
t _{on} & t _{off} (typical)	650ns / 200ns
Delay Matching	50ns

Package Options


Ordering Information

Paca Part Number	Base Part Number Package Type F		Pack	Complete Part Number	
Dase Fait Number			Quantity	Complete Part Number	
IRS2302S SOIC8N	Tube/Bulk	95	IRS2302SPBF		
IR323023	SUICON	Tape and Reel	2500	IRS2302STRPBF	

1

Typical Connection Diagram

(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and Design Tips for proper circuit board layout.

Table of Contents	Page
Ordering Information	1
Typical Connection Diagram	2
Description	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	5
Static Electrical Characteristics	6
Dynamic Electrical Characteristics	7
Functional Block Diagram	8
Input/output Timing Diagram	9
Lead Definitions	10
Lead Assignments	10
Application Information and Additional Details	11
Package Details	13
Tape and Reel Details	14
Part Marking Information	15
Qualification Information	16

Description

The IRS2302S is a high voltage, high speed power MOSFET and IGBT driver with independent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600V.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High-side floating absolute voltage	-0.3	625		
Vs	High-side floating supply offset voltage	V _B - 25	V _B + 0.3		
V _{HO}	High-side floating output voltage	V _S - 0.3	V _B + 0.3	V	
V _{cc}	Low-side and logic fixed supply voltage	-0.3	25	v	
V_{LO}	Low-side output voltage	-0.3	V _{CC} + 0.3	_{cc} + 0.3	
V _{IN}	Logic input voltage (IN & SD)	COM -0.3	OM -0.3 V _{CC} + 0.3		
dV _S /dt	Allowable offset supply voltage transient	—	50	V/ns	
P _D	Package power dissipation @ TA $\leq 25^{\circ}$ C	— 0.625 V		W	
Rth _{JA}	Thermal resistance, junction to ambient — 200		°C/W		
TJ	Junction temperature	—	— 150		
Ts	Storage temperature -50 150		°C		
TL	Lead temperature (soldering, 10 seconds)		300		

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating supply absolute voltage	V _S +5	V _S + 20	
Vs	High-side floating supply offset voltage	† 1	600	
V _{HO}	High-side floating output voltage	Vs	V _B	v
V _{cc}	Low-side and logic fixed supply voltage	5	20	V
V _{LO}	Low-side output voltage	0	V _{CC}	
V _{IN}	Logic input voltage (IN & SD)	СОМ	V _{CC}	
T _A	Ambient temperature	-40	125	°C

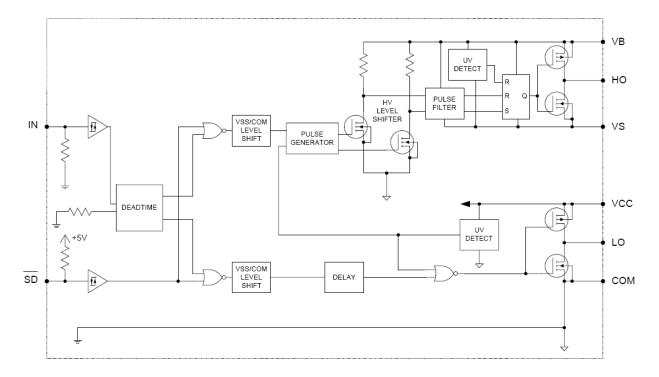
†: Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to – $V_{BS.}$

(Please refer to the Design Tip DT97 -3 for more details).

Static Electrical Characteristics

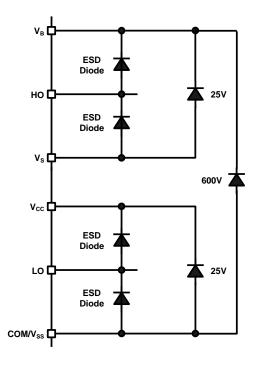
 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to COM and are applicable to the respective input leads: IN and SD. The V_{O_i} I_O and R_{on} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

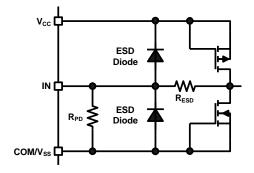
Symbol	Definition	Min	Тур	Max	Units	Test conditions
V _{IH}	Logic "1" input voltage	2.5	—	—	V	V _{CC} = 10V to 20V
VIL	Logic "0" input voltage	_	—	0.8	v	V _{CC} = 10V 10 20V
V _{OH}	High level output voltage, V_{BIAS} - V_{O}	—	—	0.2	v	I ₀ = 2mA
V _{OL}	Low level output voltage, V_{O}	—	—	0.1	v	1 ₀ – 2111A
$V_{\text{SD, TH+}}$	SD input positive going threshold	2.5	_	—	V	Vcc = 10V to 20V
V _{SD, TH-}	SD input negative going threshold	_	_	0.8	V	VCC - 10V 10 20V
I _{LK}	Offset supply leakage current	_	_	50		$V_{\rm B} = V_{\rm S} = 600 V$
I _{QBS}	Quiescent V_{BS} supply current	40	140	240	μA	$\lambda = 0 \lambda = 5 \lambda$
I _{QCC}	Quiescent V_{CC} supply current	0.4	1.0	1.6	mA	$V_{IN} = 0V \text{ or } 5V$
I _{IN+}	Logic "1" input bias current	_	5	20		IN = 5V, SD = 0V
I _{IN-}	Logic "0" input bias current	_	_	5	μA	IN = 0V, SD = 5V
V _{CCUV+} V _{BSUV+}	V_{CC} and V_{BS} supply undervoltage positive going threshold	3.3	4.1	5		
V _{CCUV-} V _{BSUV-}	V_{CC} and V_{BS} supply undervoltage negative going threshold	3	3.8	4.7	V	
V _{CCUVH} V _{BSUVH}	Hysteresis	0.05	0.3	_		
I _{O+}	Output high short circuit pulsed current	_	200	_	mA	V _O = 0V, PW ≤ 10µs
I _{O-}	Output low short circuit pulsed current	_	350	_	mA	V _O = 15V, PW ≤ 10µs

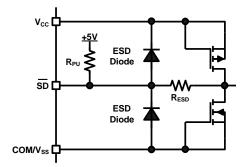

Dynamic Electrical Characteristics

V_{BIAS} (V _{CC} , V _{BS}) = 15V, C _L = 1000pF, T _A = 25°C unless o	otherwise specified.
--	----------------------

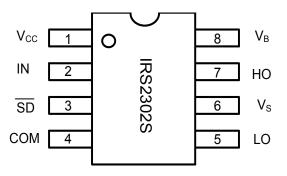
Symbol	Definition	Min	Тур	Max	Units	Test conditions
t _{on}	Turn-on propagation delay	450	650	850		V _S = 0V
t _{off}	Turn-off propagation delay	_	200	280		$V_{\rm S}$ = 0V or 600V
t _{sd}	Shut-down propagation delay	_	200	280		
MT	Delay matching, HS & LS turn-on/off	_	0	50		
t _r	Turn-on rise time	_	130	220	ns	$\lambda = 0 \lambda$
t _f	Turn-off fall time	_	50	80		$V_{\rm S} = 0V$
DT	Deadtime: LO turn-off to HO turn-on (DT_{LO-HO}) & HO turn-off to LO turn-on (DT_{HO-LO})	300	450	600		
MDT	Deadtime matching = DT _{LO-HO} – DT _{HO-LO}		0	60		



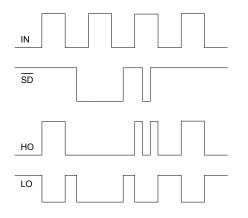

Functional Block Diagram:



Input/Output Pin Equivalent Circuit Diagrams:



Lead Definitions:


Symbol	Description		
V _{cc}	Low-side and logic fixed supply		
IN	Logic input for high and low side gate driver outputs (HO and LO), in phase with HO		
SD	Logic input for shutdown		
СОМ	Low-side return		
LO	Low-side gate drive output		
Vs	High-side floating supply return		
НО	High-side gate drive output		
V _B	High-side floating supply		

Lead Assignments

Application Information and Additional Details

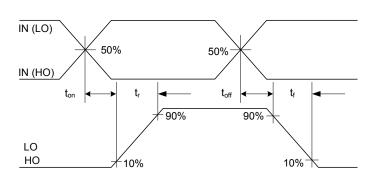
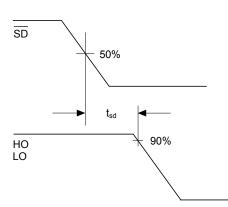



Figure 2. Switching Time Waveform Definitions

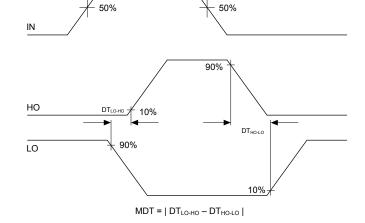
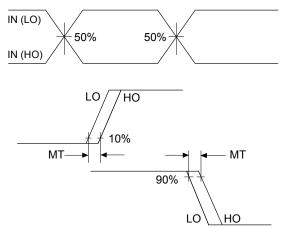
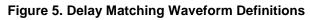




Figure 3. Shutdown Waveform Definitions

Tolerability to Negative VS Transients

The IRS2302S can withstand negative VS transient conditions on the order of -25V for a period of 100 ns (V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C).

An illustration of the IRS2302S performance can be seen in Figure 6.

Even though the IRS2302S can handle these negative VS transient conditions, it is highly recommended that the circuit designer always limits the negative VS transients as much as possible with careful PCB layout and component use.

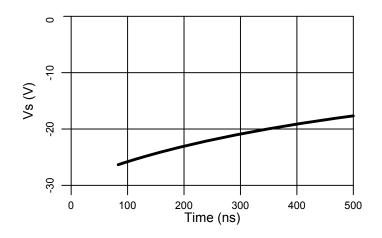
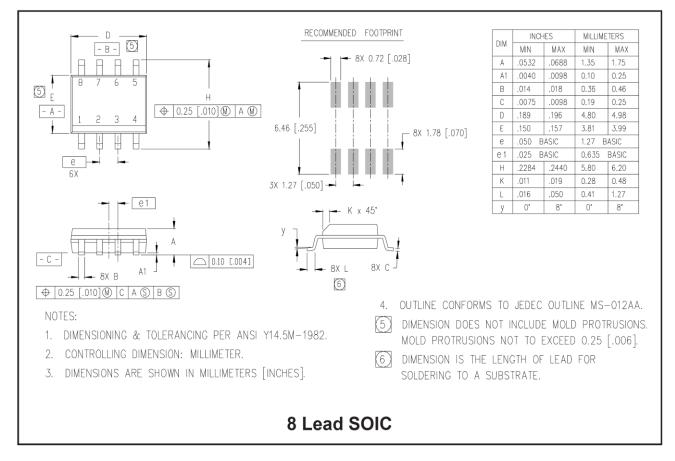
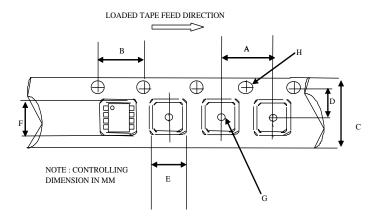
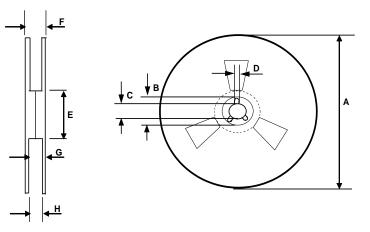



Figure 6: -Vs Transient results



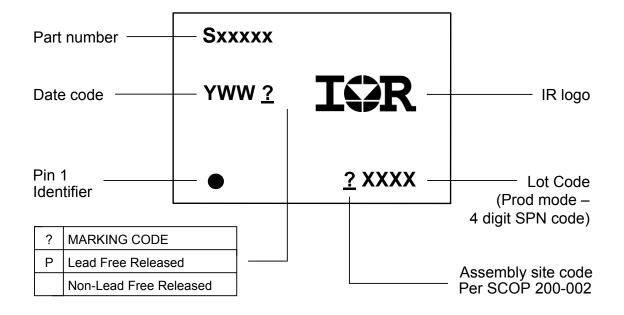
Package Details



Tape and Reel Details

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
A	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062



REEL DIMENSIONS FOR 8SOICN

	Metric		Imp	erial	
Code	Min	Max	Min	Max	
A	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	18.40	n/a	0.724	
G	14.50	17.10	0.570	0.673	
Н	12.40	14.40	0.488	0.566	

Part Marking Information

Qualification Information[†]

Qualification Level		Industrial ^{††}
		Comments: This family of ICs has passed JEDEC's Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.
Moisture Sensitivity Level		MSL2 ^{†††} 260°C
		(per IPC/JEDEC J-STD-020)
	Machine Model	Class B
ESD		(per JEDEC standard JESD22-A115)
	Human Body Model	Class 2
	Haman Dody Woder	(per EIA/JEDEC standard EIA/JESD22-A114)
IC Latch-Up Test		Class I, Level A
		(per JESD78)
RoHS Compliant		Yes

- † Qualification standards can be found at International Rectifier's web site <u>http://www.irf.com/</u>
- + Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- +++ Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center

http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245

Tel: (310) 252-7105

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

 89076GBEST
 00053P0231
 56956
 57.404.7355.5
 LT4936
 57.904.0755.0
 5882900001
 00600P0005
 00-9050-LRPP
 00-9090-RDPP

 5951900000
 01-1003W-10/32-15
 0131700000
 00-2240
 LTP70N06
 LVP640
 5J0-1000LG-SIL
 LY1D-2-5S-AC120
 LY2-US-AC240
 LY3

 UA-DC24
 00576P0020
 00600P0010
 LZN4-UA-DC12
 LZNQ2M-US-DC5
 LZNQ2-US-DC12
 LZP40N10
 00-8196-RDPP
 00-8274-RDPP

 00-8275-RDNP
 00-8609-RDPP
 00-8722-RDPP
 00-8728-WHPP
 00-8869-RDPP
 00-9091-LRPP
 00-9291-RDPP
 0207100000

 0207400000
 01312
 0134220000
 60713816
 M15730061
 61161-90
 61278-0020
 6131-204-23149P
 6131-205-17149P
 6131-209-15149P

 6131-218-17149P
 6131-220-21149P
 6131-260-2358P
 6131-204-23149P
 6131-205-17149P
 6131-209-15149P