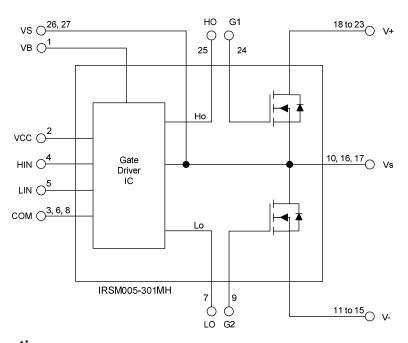


Half-Bridge IPM for Low Voltage **Applications**


Description

The IRSM005-301MH is a general purpose half-bridge with integrated gate driver in an attractive 7x8mm PQFN package. It is a general purpose building block suitable for a variety of low voltage applications where power density is of critical importance. Typical examples would be advanced motor drives, dc-to-ac and dcto-dc converters.

Features

- Package with low thermal resistance and minimal parasitics
- Low on-resistance HEXFETs: 16 m Ω typ.
- Undervoltage lockout on Vcc and Vbs
- Independent gate drive in phase with logic input
- Gate drive supply range from 10V to 20V
- Propagation delay matched to defined spec
- 3.3V, 5V and 15V logic input compatible
- RoHS compliant

Internal Electrical Schematic

Ordering Information

Orderable Part Number	Package Type	Form	Quantity
IRSM005-301MH	PQFN 7x8mm	Tray	1300
IRSM005-301MHTR	PQFN 7x8mm	Tape and Reel	2000

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the module may occur. These are not tested at manufacturing. All voltage parameters are absolute voltages referenced to $V_{\rm SS}$ unless otherwise stated in the table. The thermal resistance rating is measured under board mounted and still air conditions.

Symbol	Description	Min	Max	Unit
V _{DS}	MOSFET Drain-to-Source Voltage		100	٧
I _O	Maximum DC current per MOSFET @ T _C =25°C (Note1)		30	Α
P _d	Maximum Power dissipation per MOSFET @ T _C =100°C		13.5	W
T _J (MOSFET & IC)	Maximum Operating Junction Temperature		150	°C
T _S	Storage Temperature Range	-40	150	°C
V _B	High side floating supply voltage	-0.3	VS + 20	V
V _S	High side floating supply offset voltage	VB - 20	VB +0.3	V
V _{cc}	Low Side fixed supply voltage	-0.3	20	V
V _{IN}	Logic input voltage LIN, HIN	-0.3	VCC+0.3V	٧

Note1: Calculated based on maximum junction temperature. Bond wires current limit is 20A

Inverter Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS})=15V, TJ=25°C, unless otherwise specified.

Symbol	Description	Min	Тур	Max	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	100			V	H _{IN} =L _{IN} =0V, I _D =250μA
V _{GS(TH)}	Gate Threshold Voltage	2.0	3.0	4.0	V	I _D =100μA
R _{DS(ON)}	Drain-to-Source Voltage		16	21	mΩ	I _D =10A, T _J =25°C
NDS(ON)	Diam-to-Source voltage		35		11152	I _D =10A, T _J =150°C
			20			H _{IN} =L _{IN} =0V, V ⁺ =100V
I _{DSS}	Zero Gate Voltage Drain Current		250		μA	H _{IN} =L _{IN} =0V, V ⁺ =100V, T _J =125°C
V_{SD}	MOSFET Diode Forward Voltage		0.7	0.82	V	I _F =10A
VSD	Drop		0.6		٧	I _F =10A, T _J =125°C
I _{GSS}	Gate to Source leakage			+/-100	nA	V _{GS} =+/-20V
RBSOA	Reverse Bias Safe Operating Area	FULL	SQUARE,	limited by	T_{Jmax}	V ⁺ = 100V, V _{CC} =+15V to 0V
Q_{G}	Total gate charge		36	54		
Q _{GS}	Gate to source charge		7		nC	$I_D = 26A$ $V_{DS} = 20V$ $V_{GS} = 10V$
Q _{GD}	Gate to drain charge		11			VG5 101
EAS	Single Pulse Avalanche Energy	6.1	-		mJ	

Recommended Operating Conditions Driver Function

For proper operation the device should be used within the recommended conditions. All voltages are absolute referenced to COM. The VS offset is tested with all supplies biased at 15V differential. For more details, see IRS2005 data sheet.

Symbol	Definition	Min	Тур	Max	Units
V _B	High side floating supply voltage	V _S +10	V _S +15	V _S +20	V
Vs	High side floating supply offset voltage	Note 1		100	V
V _{CC}	Low side and logic fixed supply voltage	10	15	20	V
V _{IN}	Logic input voltage LIN, HIN	COM		V _{CC}	V
HIN	High side PWM pulse width	1			μs
Deadtime	Suggested dead time between HIN and LIN	0.3	0.5		μs

Static Electrical Characteristics Driver Function

 V_{BIAS} (V_{CC}, V_{BS})=15V, T_J=25°C, unless otherwise specified. The V_{IN}, and I_{IN} parameters are referenced to COM

Symbol	Definition	Min	Тур	Max	Units
$V_{\text{IN,th+}}$	Positive going input threshold for LIN, HIN	2.5			V
$V_{\text{IN,th-}}$	Negative going input threshold for LIN, HIN			0.8	٧
V_{BSUV}	V _{BS} supply undervoltage, Positive going threshold	8.0	8.9	9.8	٧
V_{BSUV}	V _{BS} supply undervoltage, Negative going threshold	7.4	8.2	9.0	V
V_{BSUVH}	V _{BS} supply undervoltage lock-out hysteresis		0.8		V
V _{CCUV+}	V _{CC} / supply undervoltage, Positive going threshold	8.0	8.9	9.8	V
V _{CCUV} -	V _{CC} supply undervoltage, Negative going threshold	7.4	8.2	9.0	V
V _{CCUVH}	V _{CC} supply undervoltage lock-out hysteresis		0.8		V
I _{QBS}	Quiescent V _{BS} supply current		30	75	μA
I _{QCC}	Quiescent V _{CC} supply current		150	520	μA
I _{LK}	Offset Supply Leakage Current			50	μA
I _{O+}	IC high output short circuit current	200	290		VO=0V VIN=Logic "1" PW<10us
l ₀₋	IC low output short circuit current	420	600		VO=15V VIN=Logic "0" PW<10us
I _{IN+}	Input bias current V _{IN} =5V for LIN, HIN		4	10	μA
I _{IN-}	Input bias current V _{IN} =0V for LIN, HIN		0.5	1	μA

Dynamic Electrical Characteristics Driver Function

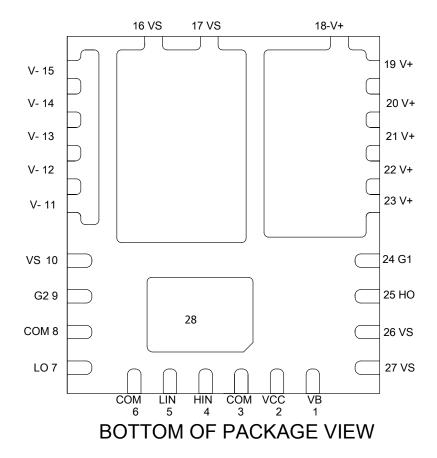
 V_{BIAS} (V_{CC} , V_{BS})=15V, TJ=25°C, C_L =1000pF unless otherwise specified. Driver only timing unless otherwise specified.

Symbol	Description	Min	Тур	Max	Units	Conditions
T _{ON}	Input to Output propagation turn-on delay time (see fig.3)		160	220	ns	
T _{OFF}	Input to Output propagation turn-off delay time (see fig. 3)		150	220	ns	
T _R	Input to Output turn-on rise time (see fig.3)		70	170	ns	
T _F	Input to Output turn-off fall time (see fig. 3)		35	95	ns	
MT	Delay matching, HS and LS turn- on/off			50	ns	

Thermal and Mechanical Characteristics

Symbol	Description	Min	Тур	Max	Units	Conditions
R _{th(J-B)}	Thermal resistance, junction to mounting pad, each MOSFET	-	3.8	-	°C/W	Standard reflow-solder process
R _{th(J-A)}	Thermal resistance, junction to ambient, each MOSFET		40		°C/W	Mounted on 50mm ² of four-layer FR4 with 28 vias

Input-Output Logic Level Table


HIN	LIN	U,V,W
HI	HI	Shoot-through
LO	LO	**
HI	LO	V+
LO	HI	0

^{*} V+ if motor current is flowing into VS, 0 if current is flowing out of VS into the motor winding

Module Pin-Out Description

Pin	Name	Description
3, 6, 8	COM	Low Side Gate Driver Return
2	V _{CC}	15V Gate Drive Supply
4	HIN	Logic Input for High Side (Active High)
5	LIN	Logic Input for Low Side (Active High)
7	LO	Low Side Gate Drive Output
9	G2	Low Side FET Gate
10, 16, 17	Vs	Phase Output
11 to 15	V-	Low Side Source Connection
18 to 23	V+	DC Bus
24	G1	High Side FET Gate
25	НО	High Side Gate Drive Output
26, 27	Vs	Phase Output (-ve of Bootstrap Cap Connection)
1	V_{B}	High Side Floating Supply (+ve Bootstrap Cap Connection)

Exposed pad (Pin 28) has to be connected to COM for better electrical performance

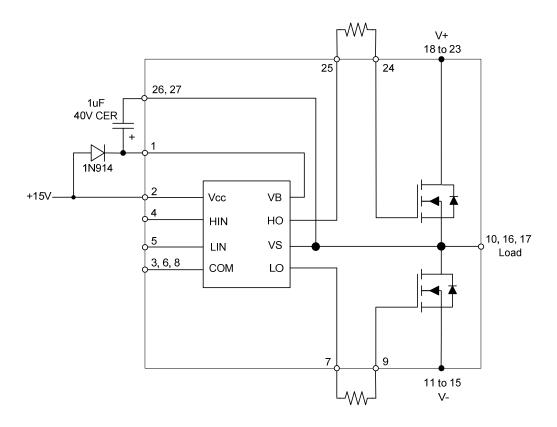


Figure 1: Typical Application Connection

- 1. Bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
- 2. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on IR Design tip DT04-4 or application note AN-1044.

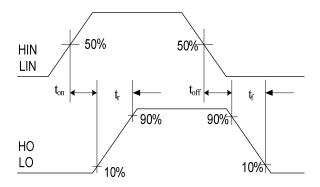
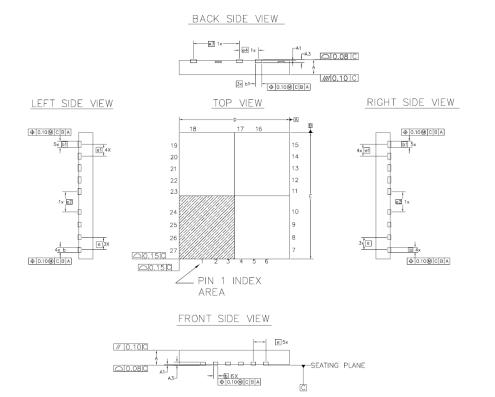


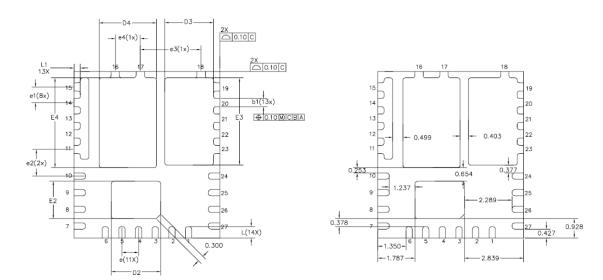
Figure 2. IC switching waveforms definitions.


Qualification

Qualification Level		Industrial ^{††} (per JEDEC JESD 47E)
Moisture Sensitivity Level		MSL3 ^{†††} (per IPC/JEDEC J-STD-020C)
ESD	Machine Model	Class A (±200V) (per JEDEC standard JESD22-A115A)
ESD	Human Body Model	Class 2 (±2000V) (per EIA/JEDEC standard EIA/JES-001A-2011)
RoHS Compliant		Yes

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

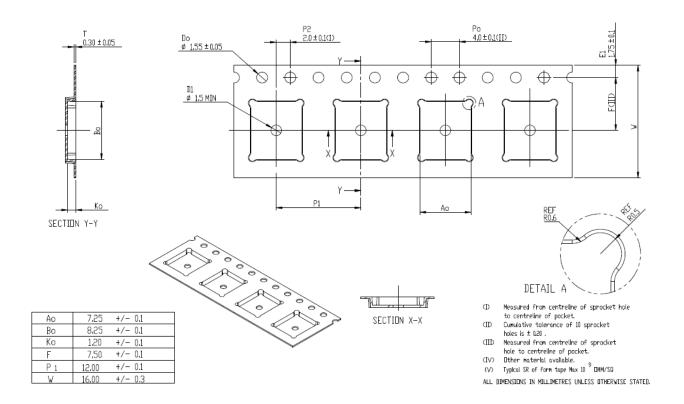
Package Outline (Top & Side view)



SYMBOL	DIMENSIONS IN					
\geq	MII	LLIMETE	R			
Ó	MIN.	MIN. NOM. MAX				
А	0.800	0.900	1.000			
A1	0.000	_	0.050			
А3	0.2	203 REI				
Ь	0.250	0.300	0.350			
b1	0.350	0.400	0.450			
D	6.900	7.000	7.100			
Ε	7.900	8.000	8.100			
D2	2.323	2.373	2.423			
E2	1.748	1.798	1.848			
D3	2.290	2.340	2.390			
E3	4.144	4.194	4.244			
D4	2.698	2.748	2.798			
E4	4.267	4.317	4.367			
е	0.8	800 BS	C			
e1	0.750 BSC					
e2	1.281 BSC					
еЗ	2.918 BSC					
е4	1.200 BSC					
L	0.500	0.550	0.600			
L1	0.253	0.303	0.353			

Package Outline (Bottom View, 1 of 2)

PACKAGE BOTTOM VIEW


YMBOL	DIN	MENSION	IS			
Σ	MILLIMETER					
0	MIN.	NOM.	MAX.			
А	0.800	0.900	1.000			
A1	0.000	_	0.050			
А3	0.2	203 REI				
Ь	0.250	0.300	0.350			
b1	0.350	0.400	0.450			
D	6.900	7.000	7.100			
E	7.900	8.000	8.100			
D2	2.323	2.373	2.423			
E2	1.748	1.798	1.848			
D3	2.290	2.340	2.390			
E3	4.144	4.194	4.244			
D4	2.698	2.748	2.798			
E4	4.267	4.317	4.367			
е	0.	800 BS	C			
e1	0.750 BSC					
e2	1.281 BSC					
еЗ	2.	918 BS	С			
е4	1.200 BSC					
L	0.500	0.550	0.600			
L1	0.253	0.303	0.353			

- 1. For mounting instruction see AN-1168.
- 2. For recommended PCB via design see AN-1091.
- 3. For recommended design, solder profile, integration and rework guidelines see AN-1028.
- 4. For board inspection guidelines see AN-1133.

Tape and Reel Details

Data and Specifications are subject to change without notice IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 011003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63