Smart high-side NMOS-power switch

ITS4200S-SJ-D

Features

- CMOS compatible input
- Switching all types of resistive, inductive and capacitive loads
- Fast demagnetization of inductive loads
- Very low standby current
- Optimized electromagnetic compatibility (EMC)
- Open drain diagnostic output for overtemperature and short circuit

- Open load detection in OFF-state with external resistor
- Overload protection
- Current limitation
- Short circuit protection
- Thermal shutdown with restart
- Overvoltage protection (including load dump)
- Reverse battery protection with external resistor
- Loss of GND and loss of Vbb protection
- Electrostatic discharge protection (ESD)
- Green Product (RoHS compliant)

Potential applications

- All types of resistive, inductive and capacitive loads
- Power switch for $12 \mathrm{~V}, 24 \mathrm{~V}$ and 45 V DC applications with CMOS compatible control interface
- Open drain diagnosis feedback for overtemperature and short circuit
- Driver for electromagnetic relays
- Power management for high-side-switching with low current consumption in OFF-mode

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC.

Description

The ITS4200S-SJ-D is a protected $200 \mathrm{~m} \Omega$ single channel Smart High-Side NMOS-Power Switch in a PG-DSO-8 package with charge pump, CMOS compatible input and diagnostic feedback.

Table 1 Product summary

Parameter	Symbol	Values
Overvoltage protection	$V_{\text {SAZ } \min }$	62 V
Operating voltage range	V_{S}	$6 \mathrm{~V}<V_{\mathrm{S}}<52 \mathrm{~V}$
On-state resistance	R_{DSON}	typ. $150 \mathrm{~m} \Omega$
Nominal load current	$I_{\text {L(nom })}$	1.2 A
Operating temperature range	T_{j}	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Type	Package	Marking
ITS4200S-SJ-D	PG-DSO-8	I200SD

Table of Contents

1 Block diagram and terms 4
2 Pin configuration 5
2.1 Pin assignment 5
2.2 Pin definitions and functions 5
3 General product characteristics 6
3.1 Absolute maximum ratings 6
3.2 Functional range 7
3.3 Thermal resistance 7
4 Electrical characteristics 8
5 Typical performance graphs 11
6 Application information 16
6.1 Application diagram 16
6.2 Diagnosis description 17
6.3 Special feature description 18
6.4 Typical application waveforms 19
6.5 Protection behavior 20
7 Package information 21
8 Revision history 22

Block diagram and terms

1 Block diagram and terms

Figure 1 Block diagram

Figure 2 Terms - parameter definition

Smart high-side NMOS-power switch ITS4200S-SJ-D

Pin configuration

2 Pin configuration

2.1 Pin assignment

Figure 3 Pin configuration top view, PG-DSO-8

2.2 Pin definitions and functions

Pin	Symbol	Function
1	GND	Logic ground
2	IN	Input, controls the power switch; the powerswitch is ON when high
3	OUT	Output to the load
4	ST	Status flag; diagnosis feedback; NMOS open drain
$5,6,7,8$	VS	Supply voltage (design the wiring for the maximum short circuit current and also for low thermal resistance)

General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Table 2 Absolute maximum ratings ${ }^{1)}$ at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified. Currents flowing into the device unless otherwise specified in chapter "Block Diagram and Terms"

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			

Supply voltage VS

Voltage	$V_{\text {S }}$	-	-	52	V	-	4.1.1
Voltage for short circuit protection	$v_{\text {SSC }}$	-	-	36	V	-	4.1.2
Output stage OUT							
Output current; (short circuit current see electrical characteristics)	${ }^{\text {out }}$	-	-	self limited	A	-	4.1.3

Input IN							
Current	I_{N}	-5	-	5	mA	-	4.1 .4

Status ST

Current	$I_{\text {ST }}$	-5	-	5	mA	-	4.1 .5

Temperatures

Junction temperature	T_{j}	-40	-	125	${ }^{\circ} \mathrm{C}$	-	4.1 .6
Storage temperature	$T_{\text {stg }}$	-55	-	125	${ }^{\circ} \mathrm{C}$	-	4.1 .7

Power dissipation

$\mathrm{Ta}=25^{\circ} \mathrm{C}^{2)}$	$P_{\text {tot }}$	-	-	1.4	W	-	4.1 .8

Inductive load switch-off energy dissipation

$T_{\mathrm{j}}=125^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}^{3)}$	E_{AS}	-	-	125	mJ	single pulse	4.1 .9

ESD susceptibility

ESD susceptibility (input pin IN)	$V_{\text {ESD }}$	-1	-	1	kV	HBM $^{4)}$	4.1 .10
ESD susceptibility (output pin OUT)	$V_{\text {ESD }}$	-6	-	6	kV	HBM 4	4.1 .12
ESD susceptibility (all other pins)	$V_{\text {ESD }}$	-4	-	4	kV	HBM 4	4.1 .11

1) Not subject to production test, specified by design.
2) Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with 6 cm 2 (one layer, 70 mm thick) copper area for Vbb connection. PCB is vertical without blown air.
3) Not subject to production test, specified by design.
4) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS001 ($1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$)

Note: Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" the normal operating range. Protection functions are neither designed for continuous nor repetitive operation.

General product characteristics

$3.2 \quad$ Functional range

Table 3 Functional range

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Nominal operating voltage	V_{S}	6	-	52	V	$V_{\text {S increasing }}$	4.2 .1

Note: \quad Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

$3.3 \quad$ Thermal resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org.

Table 4 Thermal resistance ${ }^{1 \text { 1) }}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Thermal resistance - junction to pin5	$R_{\text {thj-pin5 }}$	-	23.3	-	K/W	-	4.3.1
Thermal resistance - junction to ambient-1sOp, minimal footprint	$R_{\text {thJA_1sop }}$	-	128.7	-	K/W	2)	4.3.2
Thermal resistance - junction to ambient-1s0p, $300 \mathrm{~mm}^{2}$	$R_{\text {thJA_1sop_300mm }}$	-	70.1	-	K/W	3)	4.3.3
Thermal resistance - junction to ambient - 1s0p, $600 \mathrm{~mm}^{2}$	$R_{\text {thJA_1sp__600mm }}$	-	65.6	-	K/W	${ }^{4)}$	4.3.4
Thermal resistance - junction to ambient-2s2p	$R_{\text {thJA_2s2p }}$	-	55.4	-	K/W	${ }^{5)}$	4.3.5
Thermal resistance - junction to ambient with thermal vias - 2 s 2 p	$R_{\text {thJA_2s2p }}$	-	53.5	-	K/W	${ }^{6)}$	4.3.6

1) Not subject to production test, specified by design
2) Specified $R_{\text {thJA }}$ value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, footprint; the product (Chip+Package) was simulated on a $76.2 \times 114.3 \times 1.5 \mathrm{~mm}$ board with $1 \times 70 \mu \mathrm{~m} \mathrm{Cu}$.
3) Specified $R_{\text {thJA }}$ value is according to Jedec JESD51-3 at natural convection on $\operatorname{FR4} 4$ sOp board, $\mathrm{Cu}, 300 \mathrm{~mm}^{2}$; the Product (Chip+Package) was simulated on a $76.2 \times 114.3 \times 1.5 \mathrm{~mm}$ board with $1 \times 70 \mu \mathrm{~m} \mathrm{Cu}$.
4) Specified $R_{\text {thJA }}$ value is according to Jedec JESD51-3 at natural convection on FR4 1sOp board, $600 \mathrm{~mm}^{2}$; the product (Chip+Package) was simulated on a $76.2 \times 114.3 \times 1.5 \mathrm{~mm}$ board with $1 \times 70 \mu \mathrm{~m} \mathrm{Cu}$.
5) Specified $R_{\text {thJA }}$ value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2 s 2 p board; the product (Chip+Package) was simulated on a $76.2 \times 114.3 \times 1.5 \mathrm{~mm}$ board with 2 inner copper layers $(2 \times 70 \mu \mathrm{~m} \mathrm{Cu}, 2 \times 35 \mu \mathrm{~m} \mathrm{Cu})$.
6) Specified $R_{\text {thJA }}$ value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2 s 2 p board with two thermal vias; the Product (Chip+Package) was simulated on a $76.2 \times 114.3 \times 1.5 \mathrm{~mm}$ board with 2 inner copper layers ($2 \times 70 \mu \mathrm{~m}$ $\mathrm{Cu}, 2 \times 35 \mu \mathrm{~m} \mathrm{Cu}$. The diameter of the two vias are equal 0.3 mm and have a plating of 25 um with a copper heatsink area of $3 \mathrm{~mm} \times 2 \mathrm{~mm}$). JEDEC51-7: The two plated-through hole vias should have a solder land of no less than 1.25 mm diameter with a drill hole of no less than 0.85 mm diameter.

Electrical characteristics

4 Electrical characteristics

Table $5 \quad V_{\mathrm{S}}=12 \mathrm{~V}$ to $\mathbf{4 2} \mathrm{V} ; \boldsymbol{T}_{\mathrm{j}}=-\mathbf{4 0 ^ { \circ }} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; all voltages with respect to ground, currents flowing into the device unless otherwise specified in chapter "Block Diagram and Terms"); typical values at $V_{\mathrm{s}}=13.5 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Powerstage							
NMOS ON resistance	$R_{\text {DSON }}$	-	150	200	$\mathrm{m} \Omega$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~A} ; T_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \\ & 9 \mathrm{~V}<V_{\mathrm{S}}<52 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \end{aligned}$	5.0.1
NMOS ON resistance	$R_{\text {DSON }}$	-	250	350	$\mathrm{m} \Omega$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~A} ; T_{\mathrm{j}}=125^{\circ} \mathrm{C} ; \\ & 9 \mathrm{~V}<V_{\mathrm{S}}<52 \mathrm{~V} ; V_{\mathrm{IN}}=5 \mathrm{~V} \end{aligned}$	5.0.2
Nominal load current; device on PCB ${ }^{1)}$	$I_{\text {Lnom }}$	1.2	-	-	A	$T_{\text {pin5 }}=85^{\circ} \mathrm{C}$	5.0.3
Timings of power stages ${ }^{2)}$							
Turn ON time (to 90% of $V_{\text {out }}$); L to H transition of $V_{\text {IN }}$	$t_{\text {ON }}$	-	80	180	$\mu \mathrm{S}$	$V_{\mathrm{S}}=13.5 \mathrm{~V} ; R_{\mathrm{L}}=47 \Omega$	5.0.4
Turn OFF time (to 10% of $V_{\text {out }}$); H to L transition of $V_{\text {IN }}$	$t_{\text {OFF }}$	-	80	200	$\mu \mathrm{s}$	$V_{\mathrm{S}}=13.5 \mathrm{~V} ; R_{\mathrm{L}}=47 \Omega$	5.0.5
$\begin{aligned} & \text { ON-slew rate; } \Delta V_{\text {out }} / \Delta t \text {; } \\ & \text { (10 to } \left.30 \% \text { of } V_{\text {out }}\right) ; \\ & \text { L to } \mathrm{H} \text { transition of } V_{\text {IN }} \end{aligned}$	$S R_{\text {ON }}$	-	0.7	2.0	$\mathrm{V} / \mu \mathrm{s}$	$V_{\mathrm{S}}=13.5 \mathrm{~V} ; R_{\mathrm{L}}=47 \Omega$	5.0.6
OFF-slew rate; $\Delta V_{\text {out }} / \Delta t$; (70 to 40% of $V_{\text {out }}$); H to L transition of $V_{\text {IN }}$	$S R_{\text {OFF }}$	-	0.9	2.0	$\mathrm{V} / \mathrm{\mu s}$	$V_{\mathrm{S}}=13.5 \mathrm{~V} ; R_{\mathrm{L}}=47 \Omega$	5.0.7
Under voltage lockout (charge pump start-stop-restart)							
Supply undervoltage; charge pump stop voltage	$v_{\text {suv }}$	-	-	4	v	V_{S} decreasing $-40^{\circ} \mathrm{C}<T_{j}<85^{\circ} \mathrm{C}$	5.0.8
Supply undervoltage; Charge pump stop voltage	$v_{\text {suv }}$	-	-	5.5	v	V_{S} decreasing; $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$	5.0.9
Supply startup voltage; Charge pump restart voltage	$v_{\text {ssu }}$	-	4	5.5	v	$v_{\text {s }}$ increasing	5.0.10
Current consumption							
Operating current	$I_{\text {GND }}$	-	0.8	2	mA	$V_{\text {IN }}=5 \mathrm{~V}$	5.0.11
Standby current	$I_{\text {SSTB }}$	-	-	15	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {IN }}=0 \mathrm{~V} ; V_{\text {OUT }}=0 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<T_{\mathrm{j}}<85^{\circ} \mathrm{C} \end{aligned}$	5.0.12
Standby current	$I_{\text {SSTB }}$	-	-	18	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	5.0.13
Output leakage current	$I_{\text {OUTLK }}$	-	-	5	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V} ; V_{\text {OUT }}=0 \mathrm{~V}$	5.0.14
Protection functions ${ }^{3)}$							
Initial peak short circuit current limit	$I_{\text {LSCP }}$	-	-	9	A	$\begin{aligned} & T_{\mathrm{j}}=-40^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{s}}=20 \mathrm{~V} ; \\ & V_{\mathrm{IN}}=5.0 \mathrm{~V} ; \mathrm{t}_{\mathrm{m}}=150 \mu \mathrm{~s} \end{aligned}$	5.0.15
Initial peak short circuit current limit	$I_{\text {LSCP }}$	-	6.5	-	A	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C} ; V_{\mathrm{S}}=20 \mathrm{~V} ; \\ & V_{\mathrm{IN}}=5.0 \mathrm{~V} ; \mathrm{t}_{\mathrm{m}}=150 \mu \mathrm{~s} \end{aligned}$	5.0.16

Electrical characteristics

Table $5 \quad V_{\mathrm{s}}=12 \mathrm{~V}$ to $42 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; all voltages with respect to ground, currents flowing into the device unless otherwise specified in chapter "Block Diagram and Terms"); typical

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Initial peak short circuit current limit	${ }_{\text {LSCP }}$	4	-	-	A	$\begin{aligned} & T_{\mathrm{j}}=125^{\circ} \mathrm{C} ; V_{\mathrm{S}}=20 \mathrm{~V} ; \\ & V_{\mathrm{IN}}=5.0 \mathrm{~V} ; t_{\mathrm{m}}=150 \mu \mathrm{~s} \end{aligned}$	5.0.17
Initial peak short circuit current limit ${ }^{4)}$	$I_{\text {LSCP }}$	-	5	-	A	$\begin{aligned} & V_{\mathrm{s}}>40 \mathrm{~V} ; V_{\mathrm{IN}}=5.0 \mathrm{~V} ; \\ & t_{\mathrm{m}}=150 \mu \mathrm{~s} \end{aligned}$	5.0.18
Repetitive short circuit current limit $T_{\mathrm{j}}=T_{\mathrm{j} \text { Trip }}$; see timing diagrams	$I_{\text {LSCR }}$	-	6	-	A	$V_{\text {IN }}=5.0 \mathrm{~V} ; V_{\text {S }}<40 \mathrm{~V}$	5.0.19
Repetitive short circuit current limit $T_{\mathrm{j}}=T_{\mathrm{j} \text { Trip }}$; see timing diagrams	${ }_{\text {LSCR }}$	-	4.5	-	A	$V_{\text {IN }}=5.0 \mathrm{~V} ; V_{\text {S }}>40 \mathrm{~V}$	5.0.20
Output clamp at $V_{\text {OUT }}=V_{S}-V_{\text {DSCL }}$ (inductive load switch off)	$V_{\text {DSCL }}$	59	63	-	v	$\mathrm{I}_{\mathrm{s}}=4 \mathrm{~mA}$	5.0.22
Overvoltage protection $V_{\text {OUT }}=v_{\mathrm{S}}-v_{\mathrm{ONCL}}$	$V_{\text {SAZ }}$	62	-	-	v	$I_{\text {S }}=4 \mathrm{~mA}$	5.0.23
Thermal overload trip temperature	$T_{\text {jTrip }}$	150	-	-	${ }^{\circ} \mathrm{C}$	-	5.0.24
Thermal hysteresis	$T_{\text {HYS }}$	-	10	-	K	-	5.0.25

Continuous reverse battery voltage	$V_{\text {SREV }}$	-	-	52	V	-	5.0.26
Forward voltage of the drain-source reverse diode	$V_{\text {FDS }}$	-	600	-	mV	$\begin{aligned} & I_{\mathrm{FDS}}=200 \mathrm{~mA} ; \\ & V_{\mathrm{IN}}=0 \mathrm{~V} ; \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$	5.0.27
Input interface; pin IN							
Input turn-ON voltage (logic input high-level)	$V_{\text {INON }}$	2.2	-	-	V	-	5.0.28
Input turn-OFF voltage (logic input low-level)	$V_{\text {INOFF }}$	-	-	0.8	V	-	5.0.29
Input threshold hysteresis	$V_{\text {INHYS }}$	-	0.4	-	V	-	5.0.30
Off state input current	$I_{\text {INOFF }}$	1	-	25	$\mu \mathrm{A}$	$V_{\text {IN }}=0.7 \mathrm{~V}$	5.0.31
On state input current	$I_{\text {INON }}$	3	-	25	$\mu \mathrm{A}$	$V_{\text {IN }}=5.0 \mathrm{~V}$	5.0.32
Input resistance	$R_{\text {IN }}$	2.0	3.5	5.0	$k \Omega$	-	5.0.33

Status output (NMOS open drain); pin ST

Status output zener voltage	V_{STZ}	5.4	6.1	6.8	V	$I_{\mathrm{ST}}=1.6 \mathrm{~mA}$	5.0 .34
Status output low voltage	V_{STLO}	-	-	0.4	V	$I_{\mathrm{ST}}=1.6 \mathrm{~mA} ; T_{\mathrm{j}}<25^{\circ} \mathrm{C}$	5.0 .35
Status output low voltage	V_{STLO}	-	-	0.6	V	$I_{\mathrm{ST}}=1.6 \mathrm{~mA} ; T_{\mathrm{j}}<125^{\circ} \mathrm{C}$	5.0 .36
Status leakage current	I_{STLK}	-	-	2	$\mu \mathrm{~A}$	$V_{\mathrm{ST}}=5 \mathrm{~V} ; T_{\mathrm{j}}<105^{\circ} \mathrm{C}$	5.0 .37
Status invalid time after positive input slope $^{6) 7 \text {) }}$	t_{dP}	-	120	160	$\mu \mathrm{~S}$	$V_{\mathrm{S}}=13.5 \mathrm{~V}$	5.0 .38
Status invalid time after negative input slope $^{8 / 9)}$	t_{dN}	-	250	400	$\mu \mathrm{~S}$	$V_{\mathrm{S}}=13.5 \mathrm{~V}$	5.0 .39

Electrical characteristics

Table $5 \quad V_{\mathrm{S}}=12 \mathrm{~V}$ to $42 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; all voltages with respect to ground, currents flowing into the device unless otherwise specified in chapter "Block Diagram and Terms"); typical values at $V_{\mathrm{s}}=\mathbf{1 3 . 5 V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			

Diagnostic characteristics

Short circuit detection voltage	$V_{\text {OUTSC }}$	-	2.8	-	V	-	5.0 .40
Open load detection voltage $^{10)}$	$V_{\text {OUTOL }}$	-	3	4	V	-	5.0 .41
Internal pull down resistor							
		$R_{\text {OUTPD }}$	-	200	-	$\mathrm{k} \Omega$	$V_{\text {OUT }}=4 \mathrm{~V}$

1) Device on $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1,5 \mathrm{~mm}$ epoxy FR4 PCB with $6 \mathrm{~cm}^{2}$ (one layer copper 70 um thick) copper area for supply voltage connection. PCB in vertical position without blown air.
2) Timing values only with high slewrate input signal; otherwise slower.
3) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.
4) No subject to production test; specified by design.
5) Requires a 150Ω resistor in GND connection. The reverse load current trough the intrinsic drain-source diode of the power-MOS has to be limited by the connected load. Power dissipation is higher compared to normal operation due to the voltage drop across the drain-source diode. The temperature protection is not functional during reverse current operation! Input current has to be limited (see max ratings).
6) No delay time after overtemperature switch off and short circuit in on-state.
7) No subject to production test; specified by design.
8) No delay time after overtemperature switch off and short circuit in on-state.
9) No subject to production test; specified by design.
10) External pull up resistor required for open load detection in off state.
11) No subject to production test; specified by design.

Smart high-side NMOS-power switch ITS4200S-SJ-D

Typical performance graphs

5 Typical performance graphs

Typical characteristics

Transient thermal impedance $\mathrm{Z}_{\text {thJA }}$ versus pulse time t_{p} @ $\mathbf{6 c m} \mathbf{c m}^{\mathbf{2}}$ heatsink area

On-resistance $R_{\text {DSoN }}$ versus junction temperature $\boldsymbol{T}_{\mathrm{j}}$

Transient thermal impedance $\mathbf{Z}_{\text {thJA }}$ versus pulse time t_{p} @ min. footprint

On-resistance $R_{\text {DSON }}$ versus
supply voltage V_{s}

Smart high-side NMOS-power switch ITS4200S-SJ-D

Typical performance graphs

Typical characteristics

Switch ON time $t_{\text {ON }}$ versus

junction temperature T_{j}

ON slewrate $S R_{\text {ON }}$ versus junction temperature $\boldsymbol{T}_{\mathrm{j}}$

Switch OFF time $t_{\text {off }}$ versus junction temperature T_{j}

OFF slewrate $S R_{\text {OFF }}$ versus junction temperature T_{j}

Smart high-side NMOS-power switch ITS4200S-SJ-D

Typical performance graphs

Typical characteristics

Standby current $I_{\text {SSTB }}$ versus junction temperature $\boldsymbol{T}_{\mathbf{j}}$

Initial peak short circuit current limit $I_{\text {LSCP }}$ versus junction temperature $\boldsymbol{T}_{\mathrm{j}}$

Output leakage current $I_{\text {oUtLK }}$ versus junction temperature T_{j}

Initial short circuit shutdown time $t_{\text {scoff }}$ versus junction temperature T_{j}

Typical performance graphs

Typical characteristics

Input current consumption $I_{\text {IN }}$ versus junction temperature $\boldsymbol{T}_{\mathrm{j}}$

Input threshold voltage $V_{\text {INH,L }}$ versus junction temperature $\boldsymbol{T}_{\mathrm{j}}$

Input current consumption $I_{\text {IN }}$ versus input voltage $V_{\text {IN }}$

Input threshold voltage $V_{\text {INH,L }}$ versus supply voltage V_{s}

Typical performance graphs

Typical characteristics

Max. allowable load inductance L versus

 load current I_{L}

Status delay time $t_{\mathrm{N}, \mathrm{P}}$ versus supply voltage V_{S}

Max. allowable Inductive single pulse Switch-off energy $E_{A S}$ versus load current I_{L}

Internal output pull down resistor $\boldsymbol{R}_{\text {OUTOPD }}$ versus supply voltage V_{s}

Smart high-side NMOS-power switch ITS4200S-SJ-D

Application information

6 Application information

6.1 Application diagram

The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty for a certain functionality, condition or quality of the device.

Figure 4 Application diagram

The ITS4200S-SJ-D can be connected directly to the battery of a supply network. It is recommended to place a ceramic capacitor (e.g. $\mathrm{C}_{\mathrm{S}}=220 \mathrm{nF}$) between supply and GND of the ECU to avoid line disturbances. Wire harness inductors/resistors are sketched in the application circuit above.
The complex load (resistive, capacitive or inductive) must be connected to the output pin OUT.
A built-in current limit protects the device against destruction.
The ITS4200S-SJ-D can be switched on and off with standard logic ground related logic signal at pin IN .
In standby mode (IN=L) the ITS4200S-SJ-D is deactivated with very low current consumption.
The output voltage slope is controlled during on and off transition to minimize emissions. Only a small ceramic capacitor COUT $=1 \mathrm{nF}$ is recommended to attenuate RF noise.

In the following chapters the main features, some typical waverforms and the protection behavior of the ITS4200S-SJ-D is shown. For further details please refer to application notes on the Infineon homepage.

Smart high-side NMOS-power switch ITS4200S-SJ-D

Application information

6.2 Diagnosis description

For diagnostic purpose the device provides a digital output pin ST in order to indicate fault conditions. The status output (ST) of the ITS4200S-SJ-D is a high voltage open drain output.
In "normal" operation mode the NMOS open drain transistor is switched OFF.
The following truth table defines the status output.

Table 6 Truth table of diagnosis feature

Device operation	IN	OUT	ST	Comment
Normal operation	L	L	H	
Normal operation	H	H	H	
Short circuit to GND	L	L	H	
Short circuit to GND	H	L	L	OUT $=$ L: $V_{\text {OUT }}<V_{\text {OUTSC }} ;$ Short circuit detection voltage; typ 2.8V
Short circuit to V $_{\text {S }}$ (in OFF state)	L	H	L	
Short circuit to V $_{\text {S }}$ (in OFF state)	H	H	H	
Overload	L	L	H	
Overload	H	H	H	OUT=H: $V_{\text {OUT }}>V_{\text {OUTSC }} ;$ Short circuit detection voltage; typ 2.8V
Overtemperature	L	L	H	
Overtemperature	H	L	L	
Open load in OFF state	Z	H	OUT=Z: high impedance; potential depends on external circuit	
Open load in OFF state	L	H	L	with external resistor between $V_{\text {S }}$ and OUT

Application information

6.3 Special feature description

Supply over voltage:

If over-voltage is applied to the V_{s}-Pin:
Voltage is limited to $\mathrm{V}_{\text {zDSAz; }}$ current can be calculated:
$\mathbf{I}_{\text {ZDSAZ }}=\left(\mathbf{V}_{\mathrm{s}}-\mathbf{V}_{\text {ZDSAZ }}\right) / \mathbf{R}_{\mathrm{GND}}$
A typical value for RGND is 150Ω.
In case of ESD pulse on the input pin there is in both polarities a peak current $\mathbf{I}_{\text {INpeak }} \sim V_{\text {ESD }} / R_{\text {IN }}$

Drain-Source power stage clamper $\mathrm{V}_{\mathrm{DSCL}}$:

When an inductive load is switched off a current path must be established until the current is sloped down to zero (all energy removed from the inductive load). For that purpose the series combination $\mathrm{Z}_{\text {DSCL }}$ is connected between Gate and Drain of the power DMOS acting as an active clamp.
When the device is switched off, the voltage at OUT turns negative until $V_{\text {DSCL }}$ is reached.
The voltage on the inductive load is the difference between $V_{\text {DSCL }}$ and V_{S}.

Supply reverse voltage:

If reverse voltage is applied to the device :
1.) Current via load resistance RL: $I_{\text {Rev1 }}=\left(V_{\text {Rev }}-V_{\text {FDS }}\right) / R_{L}$
2.) Current via Input pin $I N$ and dignostic pin $S T$: $\mathbf{I}_{\text {Rev } 2}=\mathbf{I}_{\mathrm{ST}^{+}} \mathbf{I}_{\mathrm{IN}_{\mathrm{N}}} \sim\left(\mathbf{V}_{\mathrm{Rev}}-\mathbf{V}_{\mathrm{CC}}\right) / \mathbf{R}_{\mathrm{IN}}+\left(\mathbf{V}_{\text {Rev }}-\mathbf{V}_{\mathrm{CC}}\right) / \mathbf{R}_{\mathrm{ST} 1,2}$ Current ISt must be limited with the extrernal series resistor $\mathrm{R}_{\text {sts }}$. Both currents will sum up to:

$$
I_{\mathrm{Rev}}=I_{\text {Rev1 }}+I_{\mathrm{Rev} 2}
$$

Energy calculation:

Energy stored in the load inductance is given by :
$E_{L}=I_{L}{ }^{2 *} L / 2$
While demagnetizing the load inductance the energy dissipated by the Power-DMOS is:
$E_{A S}=E_{S}+E_{L}-E_{R}$
With an approximate solution for $\mathrm{R}_{\mathrm{L}}=0 \Omega$:
$\mathrm{E}_{\mathrm{AS}}=1 / 2{ }^{*} \mathrm{~L}^{*} \mathrm{I}^{2}{ }^{*}\left\{\left(1-\mathrm{V}_{\mathrm{S}} /\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{DSCL}}\right)\right.\right.$

Figure 5 Special feature description

Application information

6.4 Typical application waveforms

General Input Output waveforms:

Waveforms switching a capacitive load:

Waveforms switching a resistive load:

Waveforms switching an inducitive load:

Figure 6 Typical application waveforms of the ITS4200S-SJ-D

Application information

6.5 Protection behavior

Figure $7 \quad$ Protective behavior of the ITS4200S-SJ-D

Smart high-side NMOS-power switch
 ITS4200S-SJ-D

Package information

$7 \quad$ Package information

Index Marking

1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area

PG-DSO-8-16, -24, -25,-28, -31,-33, -36, -44, -49-PO V06

Figure 8 PG-DSO-8 ${ }^{1)}$

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

[^0]
Smart high-side NMOS-power switch ITS4200S-SJ-D

Revision history

8 Revision history

Revision	Date	Changes
1.10	$2019-07-25$	Datasheet updated: - ESD ratings for HBM updated according ANSI/ESDA/JEDEC JS-001 - - Editorial changes
1.0	$2012-09-01$	Datasheet release

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2019-07-25
Published by
Infineon Technologies AG
$\mathbf{8 1 7 2 6}$ Munich, Germany
© 2012-09-01 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?
Email: erratum@infineon.com
Z8F51106903

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G FPF1504UCX TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC25051YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR SIP32510DT-T1-GE3 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12

[^0]: 1) Dimensions in mm
