

Generic power evaluation board design for 12 V application - SSO8 and TLE9879QXA40

OptiMOS-6[™] 40 V SSO8 MOSFET, MOTIX[™] MCU TLE9879QXA40

Design Overview

This documentation describes the Generic Power evaluation board for 12V fit for the implementation of an automotive inverter application for controlling fans or pumps driven by BLDC motors. The system is controlled by a system- on-chip MOTIX[™] MCU with integrated MOSFET drivers in combination with OptiMOS[™]-6 leadless MOSFETs.

The design is capable to drive loads up to 400W supplied by a battery voltage of 12 V.

This design guide contains a description of the design, schematics and measurement reports.

EMC is tested according to the CISPR25 standard. Thermal performance information is given and discussed.

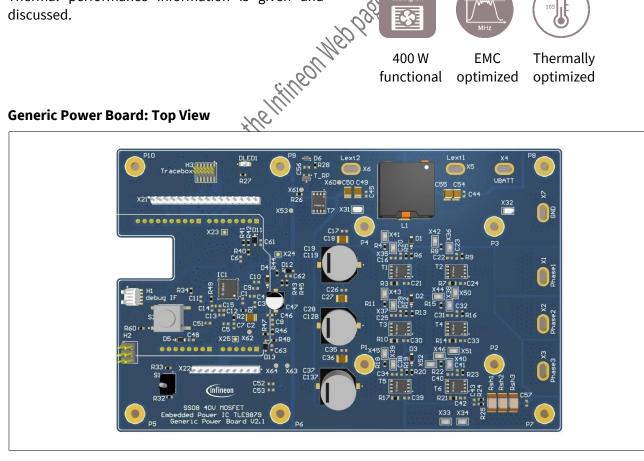
oodid's seital humber **Highlighted Components**

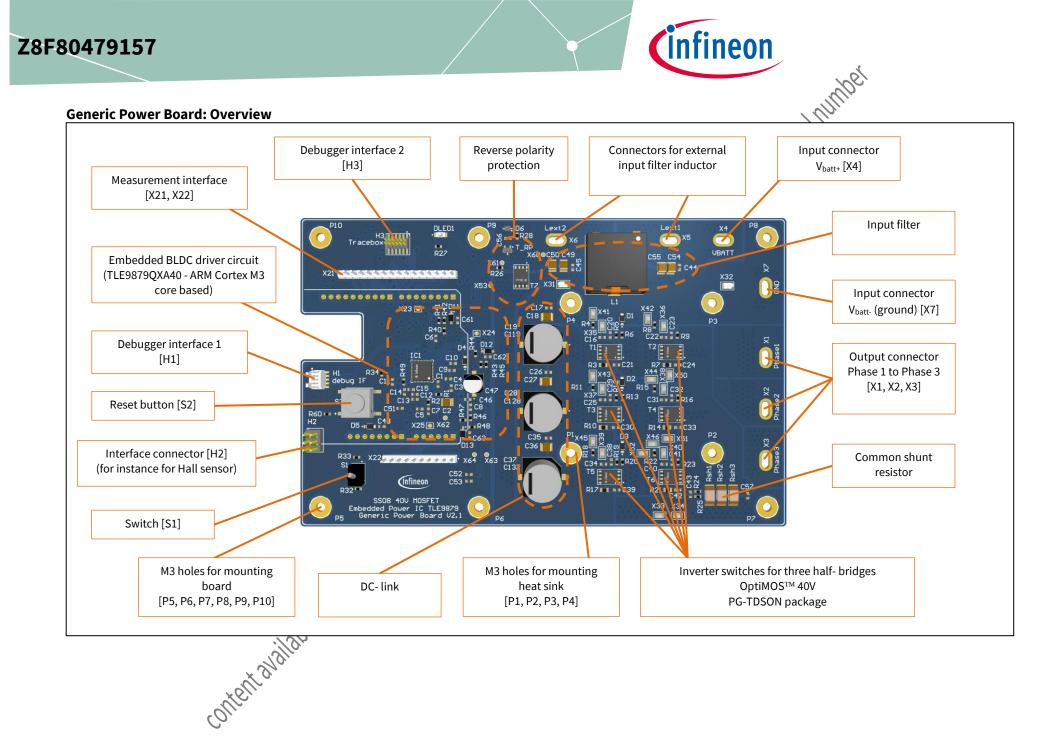
- TLE9879QXA40
- IAUC120N04S6N006
- IAUC120N04S6N010

Target Application

- Automotive Fan and Pump
- Radiator fan, Water pump
- 400 W BLOC Motor for 12 V application

Highlighted Design Aspects


EMC



400 W functional optimized

Thermally optimized

Generic Power Board: Top View

Evaluation Design Guide

Table of contents

Table of contents

Table	e of contents	
Impo	ortant Notice	
1	System Description	5
1.1	Design Specifications	
1.2	Overview	
1.3	Highlighted Products	
1.3.1	OptiMOS [™] -6 40 V SSO8 (TDSON-8) MOSFET	8
1.3.2	Overview Highlighted Products OptiMOS [™] -6 40 V SSO8 (TDSON-8) MOSFET. 3-Phase Bridge Driver IC with Integrated Arm® Cortex®-M3 Getting Started Toolchain Installation Configuration System Design Electrical Design and Components Input Filter Reverse Polarity Protection DC-link Electrolytic Capacitor Shunt Resistor Snubber Gate Driver Gate Driver circuit Heatsink Switching Performance EMC performance EMC performance Measurement configuration	9
2	Getting Started	
2.1	Toolchain Installation	
2.1.1	Configuration	
3	System Design	11
3.1	Electrical Design and Components	
3.1.1	Input Filter	
3.1.2	Reverse Polarity Protection	
3.1.3	DC-link Electrolytic Capacitor	14
3.1.4	Shunt Resistor	14
3.1.5	Snubber	15
3.1.6	Gate Driver	15
3.1.7	Gate driver circuit	16
3.1.8	Heatsink	17
3.2	Switching Performance	
3.3	EMC performance	23
3.3.1	Measurement configuration	23
3.3.2	Measurement results	25
3.4	EMC performance Measurement configuration Measurement results Thermal performance Project Collaterals Schematics Bill of Material Layout	27
4	Project Collaterals	33
4.1	Schematics	
4.2	Bill of Material	
4.3	Layout	41
4.3.1		······ · · · · · · · · · · · · · · · ·
4.3.2	Layout Printing	
5	Abbreviations and definitions	44
6	Reference documents	46
Revis	sion history	47
оў,	sion history	

Important Notice

The Evaluation Boards and Reference Boards and the information in this document are solely intended to support designers of applications to evaluate the use of products of Infineon Technologies in the intended application.

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards is **tested by** Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are **subject to functional testing only under typical load conditions**. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products and are **solely intended to be used for evaluation and testing purposes**. They shall in particular not be used for reliability testing or production. Hence, the Evaluation Boards and Reference Boards may not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that each Evaluation Boards and Reference Board will be handled in a way which is compliant with all relevant requirements and standards in the country in which they are operated.

The Evaluation Boards and Reference Boards and any information in this document are addressed **only to qualified and skilled technical staff, for laboratory usage,** and shall be used and managed according to the terms and conditions set forth in this document and in any other related documentation provided with the respective Evaluation Boards or Reference Board.

It is the **responsibility of customer's technical departments to evaluate the suitability** of the Evaluation Boards and Reference Boards for the intended application and the completeness and correctness of the information provided in this document with respect to such application.

The customer accepts that the Evaluation Boards and Reference Boards are not intended to be used for lifeendangering applications such as medical, nuclear, military, life-critical or other applications, where failure of the Evaluation Boards and Reference Boards or any results from the use thereof can reasonably be expected to result in personal injury.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any and all warranties, express or implied, including but not limited to warranties of non-infringement of third-party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold harmless Infineon Technologies from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to change this document and/or any information provided herein at any time without further notice.

System Description 1

The inverter design describes a solution for an engine cooling fan with a power capability up to 400W output power. This solution can be used for similar applications with smaller or equal output power. The circuit contains an integrated 3-phase motor control solution. The SoC microcontroller is a member of the MOTIX[™] MCU family. It combines an Arm[®] Cortex[®]-M3 microcontroller with application specific modules like an integrated 3-phase MOSFET driver, power supply and LIN-transceiver. In combination with the OptiMOS[™]-6 40V MOSFETs in PG-TDSON-8 package (SSO8) the board system is optimized for a minimum of PCB size for this power class. The focus 18 serial num of the demonstrator design is to use standard PCB materials and processes.

Design Specifications 1.1

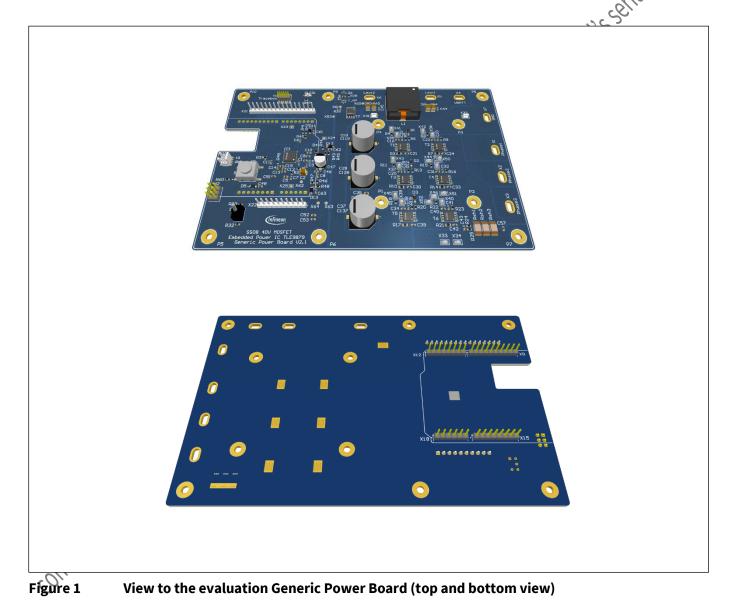
The design specifications are related to the used components and design considerations They shouldn't differ from the product datasheet values. In case of misalignment, the datasheet values of the products are valid.

Symbol ers V _{IN}	Min.	Values Typ.	Max.	Unit	Comment
V _{IN}	-0.3			A V	
	-0.3		X	Ue _	
	-0.5	12	40	V C	P_1.1.1 (TLE9879QXA40)
V _{IN}	7	12	0200	V	Specified for Design
Ι _{ουτ}	-	- M	44	А	Peak current (<10 s), air cooling attached (>1.3 m/s)
Ι _{ουτ}	-	161120	35	A	Specified for Design
V_{HALL}	-0.3*//	5	5.5	V	Specification related to GPIO Port 0,1
V _{LIN}	-28	12	40	V	P_1.1.7 (TLE9879QXA40)
VADC	-0.3	5	5.5	V	Specification related to GPIO Port 2
Wsн	-8.0	12	48	V	P_1.1.11 (TLE9879QXA40)
<i>b</i> ,	· · · · ·	· · · ·			
T _A	-40	25	105	°C	Specified for Design
	I _{OUT} V _{HALL} V _{LIN} V _{ADC}	I _{OUT} - V _{HALL} -0.3 V _{LIN} -28 V _{ADC} -0.3 V _{ADC} -0.3	Iout -	Iour -	Iour - - Iour - - VHALL -0.3 5 VLIN - VADC - -0.3 5 5 5.5 V VADC - -0.3 5 5 5.5 V VADC - -0.3 5 5 5.5 V

Generic power evaluation board design for 12 V application - SSO8 and TLE9879QXA40

System Description

Electromagnetic Compatibility		
Conducted emissions	Class 2	CISPR25, 150 kHz -108 MHz


Mechanical Spe	cification
Dimensions	168 mm x 107 mm x 15 mm (L x W x H) ¹
PCB	6-layer, top/bottom layer 2 oz, inner layers 1 oz, standard FR4, 168mm x 107 mm (L x W,
	thickness 1.6 mm
ontentavallab	cification 168 mm x 107 mm x 15 mm (L x W x H) 1 6-layer, top/bottom layer 2 oz, inner layers 1 oz, standard FR4, 168mm x 107 mm (L x W) thickness 1.6 mm thickness 1.6 mm

¹ A possibly mounted heatsink is not considered. The overall high is given by using C19, C28 and C37 in circuit DC link. Evaluation Design Guide 6 of 48

1.2 Overview

Figure 1 shows the 3D CAD view of the system. The board has seven MOSFETs equipped in a PG-TDSON-8 package (SSO8), one microcontroller with LIN and integrated 3-phase BLDC MOSFET gate driver. The board allows the configuration of the common low-side shunt-resistor of the B6- bridge by three resistors connected in parallel. All active components, including the seven MOSFETs and one driver IC, are large-area arranged on the board to distribute the heat over the whole area of the PCB. As passive components, the shunt resistors are additional heat sources. Those are collecting all return current from the three legs of the bridge. The board is designed to dissipate the heat of the shunts effectively through the thermal pads. As the power circuitry part of the PCB does not have any surface-mounted components on its bottom side, it is possible to attach a simple flat heatsink at the bottom of the board. Only controller side has through-hole connectors and a switch.

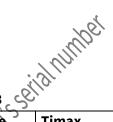
1.3 Highlighted Products

Components highlighted with a grey background are used on the Generic Power Board.

1.3.1 OptiMOS[™]-6 40 V SSO8 (TDSON-8) MOSFET

The SSO8 package offers compact 33mm² footprint size with drain to source on-state resistance R_{DS(on)} ranging from typically 0.54 ~4.4 [mΩ]. Its current rating is up to 3 times bigger than the S3O8 (TSDSON-8) package. In combination with Infineon's OptiMOS[™]-6 40 V power MOS technology, the TDSON package offers a compact yet powerful solution for automotive 3-phase motor drive up to 400W at Infineon's well known quality level for robust automotive packages.

Package	Silicon Technology	Product	Max R _{DS(on)} [mΩ]
		IAUC120N04S6L005	0.55
		IAUC120N04S6N006	0.6
		IAUC120N04S6N008	0.8
		IAUC120N04S6L008	0.8
		IAUC120N0456N009	0.9
		IAUC120N0456L009	0.9
		IAUC120N04S6N010	1.0
		IAUG120N04S6L012	1.2
SO8		AUC120N04S6N013	1.3
	OptiMOS [™] -6	MAUC100N04S6L014	1.4
103011-0)		IAUC100N04S6N015	1.5
		IAUC100N04S6L020	2.0
	'Sni	IAUC100N04S6N022	2.2
		IAUC100N04S6L025	2.5
		IAUC100N04S6N028	2.8
	×eilli	IAUC80N04S6L032	3.2
	dist.	IAUC80N04S6N036	3.6
	180	IAUC60N04S6L039	3.9
	N.C.	IAUC60N04S6N044	4.4



1.3.2 3-Phase Bridge Driver IC with Integrated Arm[®] Cortex[®]-M3

The TLE987x family addresses a wide range of smart 3-phase brushless DC motor control applications such as auxiliary pumps and fans. It provides a high level of integration and low system cost to optimize the target application segments. In addition, it offers scalability in terms of flash memory sizes and MCU system clock frequency supporting a wide range of motor control algorithms, either sensor-based or sensor-less. For more information about the product, please visit Infineon's webpage linked below.

• <u>www.infineon.com/tle987x</u>

Grade	Product	Flash	RAM	Frequency	Interface	Tjmax
	TLE9873QXW40	48 kByte	3 kByte	40 MHz	PWMGLIN	175 °C
Grade-0	TLE9877QXW40	64 kByte	6 kByte	40 MHz	RWM + LIN	175 °C
	TLE9879QXW40	128 kByte	6 kByte	40 MHz 🔪 👌	PWM + LIN	175 °C
	TLE9871QXA20	36 kByte	3 kByte	24 MHz 🔊	PWM	150 °C
	TLE9872QXA40	256 kByte	8 kByte	40 MHz	PWM + LIN	150 °C
	TLE9872-2QXA40	256 kByte	8 kByte	401MHz	PWM + LIN	150 °C
Grade-1	TLE9877QXA20	64 kByte	6 kByte	24 MHz	PWM + LIN	150 °C
Glaue-1	TLE9877QXA40	64 kByte	6 kByte	40 MHz	PWM + LIN	150 °C
	TLE9879QXA20	128 kByte	6 kByte	24 MHz	PWM + LIN	150 °C
	TLE9879-2QXA40	128 kByte	6 kByte	40 MHz	PWM + LIN	150 °C
	TLE9879QXA40	128 kByte	6 kByte	40 MHz	PWM + LIN	150 °C

Table 3 Product Family of 3-Phase Bridge Driver IC with Integrated Arm[®] Cortex[®]-M3

ontentavalable atternedstering on the mineon the

Getting Started

infineon

2 Getting Started

2.1 Toolchain Installation

In order to get the board ready and running, the software shown in Table 4 shall be installed.

The μ Vision software is a development tool provided by Arm[®] Keil[®]. With code length limitation, the shareware version of the μ Vision is still able to edit, compile and debug. The Infineon Config Wizard is a tool for configuring peripherals of the Embedded Power IC. The tool can be called from the pull-down menu of the μ Vision and helps users changing parameters from its user interface and then generates the software code accordingly. Infineon provides standard motor drive software codes for the Embedded Power IC. It can be downloaded from the Pack Installer within the μ Vision.

Steps	Company	Description
STEP1 Download and Install <u>Keil° μVision5</u>	Arm° Keil°	 Arm[*] Keil[*] μVision is an integrated development environment which consists of code editor, compiler and debugger. To learn how to use Arm[*] Keil μVision 5, check out our video "<u>Get your motor spinning</u>"
STEP2 Download Config Wizard	Infineon Technologies	 Infineon provides the Config Wizard free of charge, which is designed for configuration of chip modules. Config Wizard supports easy configuring of Embedded Power IC peripherals. Config Wizard can be installed via the Infineon Developer Center. If you don't have this Infineon toolbox yet, please go to Infineon Developer Center Launcher and enjoy the release management for updates.
STEP3 Download and Install <u>Segger J-Link Driver</u>	XMC [™] Link based on SEGGER J-Link technology	 MC[™] Link is a debug probe for all XMC microcontrollers The debug probe is based on Segger J-Link debug firmware, which enables use with DAVE and all major third-party compiler/IDEs known from the wide ARM[®] ecosystem
STEP4 Download the SDK via μVision5 Pack Installer	Infineon Technologies	 The Embedded Power Software Development Kit (SDK) is a low-level driver library which can be downloaded within Keil[®] μVision via the "Pack Installer"

Table 4 Software Toolchain Installation Guide

For the toolchain installation and free motor drive software, please check below link. <u>www.infineon.com/embedded-power</u>

For more information about the tool chain installation steps, watch our video. <u>Toolchain Installation for Embedded Power ICs / TLE98xx</u>

2.1.1

Configuration

Open a motor drive code project in µVision5 and go to "Tools" and open "Config Wizard". From there, setup the parameters of motor, speed/current controller and the peripherals of TLE987x. As the Embedded Power IC has a current-source gate driving scheme, the switching speed is not controlled by gate resistors, but by the "Gate Charge/Discharge" parameters in the BDRV tap of the peripherals. For more details about the configuration, please visit the Infineon website of Embedded Power ICs.

content asiable after test and on the International set and the intern

- 3.1 Electrical Design and Components
- **Input Filter** 3.1.1 ontent aaiable after test te into the international set and the intern

3.1.2 Reverse Polarity Protection

content aniable after the time on the Interest Net Description of the time of

DC-link Electrolytic Capacitor 3.1.3

3.

8.1.4	Shunt Resistor			60	to's serial number
			re using the?	courred demo	
	ingo	thekineonwe	0000		
ontert?	Shunt Resistor				

Generic power evaluation board design for 12 V application - SSO	8
and TLE9879QXA40	

	ower evaluation board design for 12 V application - SSO8 879QXA40 ^{ign}	infineon
3.1.5	Snubber	
3.1.6	Gate Driver	seital number
	we acquired demo board	
	witheon Web page using the	
	Le atterne of the internet in the internet in the internet is	
contental	Sate Driver	

infineon

3.1.7 Gate driver circuit

ontent aaiable after test te intentien web test time te active deno band set an under

3.1.8 Heatsink

content asiable after test and on the International set and the intern

content aniable after the time on the Interest Net Description of the time of **Switching Performance** 3.2

Evaluation Design Guide

- 3.3 EMC performance
- ontent aaiable after test te into the international set and the intern

3.3.2 Measurement results

rev. 1.0

content aniable after the time on the Interest Net Description of the time of

3.4 Thermal performance

content aniable after the time on the Interest Net Description of the time of

I

4 Project Collaterals

Schematics 4.1 content aniable after the time on the Interest Net Description of the time of

Evaluation Design Guide

ontent aaiable after test te intentien web test time te active deno band set an under

Project Collaterals

- 4.3 Layout
- 4.3.1 **PCB Stack** ontent aaiable after test te intentien web test time te active deno band set an under

4.3.2 Layout Printing

ontent aaiable after test te intentien web test time te active deno band set an under

Abbreviations and definitions

5 Abbreviations and definitions

Table 5 Abbreviations				
Abbreviation	Definition			
AC	Alternating Current			
ARM	Advanced RISK Machine			
ADC	Analogue-to-Digital Conversion			
BDRV	Bridge Driver Module of Embedded Power IC			
BLDC	Brushless Direct Current			
ВОМ	Bill of material			
CISPR	Comité International Spécial des Perturbations Radioélectriques			
DC	Direct Current 200			
DIL	Dual-In-Line			
DUT	Device Under Test			
ECU	Electrical Control Unit			
ECF	Engine Cooling Fan			
EMC	Electromagnetic Compatibility			
ESR	Equivalent Series Resistant			
FOC	Field Oriented Control			
GPIO	General Purpose Input/Output			
IC	Integrated Circuit			
LIN	Local Interconnect Network			
LISN	Line Impedance Stabilization Network			
MCU	Microcontroller Unit			
MI	Modulation Index			
MLCC	Multi-Layer-Ceramic Capacitor			
MOSFET	Wetal Oxide Semiconductor Field Effect Transistor			
PCB	Printed Circuit Board			
PG-TDSON	Plastic Green- Thin Dual Small-Outline Non-leaded Pulse Width Modulation Paradem Access Mensors			
PWM	Pulse Width Modulation			
RAM	Random Access Memory			
RBP	Reverse Battery Protection			
RC	Resistor-Capacitor			
RISC	Reduced Instruction Set Computer			
RMS	Root-Mean-Square value			
S3O8	Shrink Super Small-Outline 8 pin			
SDK	Software Development Kit			
SMD	Surface-Mounted Device			
SMT	Surface-Mounted Technology			

Generic power evaluation board design for 12 V application - SSO8 and TLE9879QXA40

Abbreviations and definitions

SoC	System On a Chip
SOA	Safe Operating Area
SSO8	Super Small-Outline 8 pin
TIM	Thermal Interface Material
TH	Through Hole
contentavailable atter	Thermal Interface Material Through Hole Through Hole Through Hole

Reference documents

6 Reference documents

This document should be read in conjunction with the following documents:

- [1] TLE9879QXA40 data sheet, Infineon Technologies AG, <u>https://www.infineon.com/dgdl/Infineon-</u> TLE9879QXA40-DataSheet-v02_00-EN.pdf?fileId=8ac78c8c81ae03fc0181d840096a3c2f
- [2] XMC Link user's manual, Infineon Technologies AG, <u>https://www.infineon.com/dgdl/Infineon-XMC Link Board Users Manual.pdf-UserManual-v01 00-EN.pdf?fileId=5546d462518ffd850152451695e45edc</u>
- [3] TLE986x_TLE987x Bridge Driver Application Note, 2022-05-02, Infineon Technologies AG, Rev 1.03 <u>https://www.infineon.com/dgdl/Infineon-AppNote-TLE986x-TLE987x-FAQ-ApplicationContestions_3-ApplicationNotes-v01_03-EN.pdf?fileId=5546d4625b62cd8a015ba9870bd91373</u>
- [4] IAUC120N04S6N010 datasheet, Infineon Technologies AG, <u>https://www.infineon.com/dgdl/Infineon-IAUC120N04S6N010-DataSheet-v01_00-EN.pdf?fileId=5546d4626c1f3dc3016c4c43cb2e1748</u>
- [5] IAUC120N04S6N006 datasheet, Infineon Technologies AG, <u>https://www.htfineon.com/dgdl/Infineon-IAUC120N04S6N006-DataSheet-v01_00-EN.pdf?fileId=5546d46275bf9adb0175e120b4b310b3</u>
- [6] Analytical calculation of the RMS current stress on the DC-link capacitor of voltage-PWM converter systems, 2006-07, IEE Proc.-Electr. Power Appl., Vol. 153, No.4.
- [7] Snubber Capacitors Application Guide, 2018-01, Cornel Dubilier
- [8] ERU chokes datasheet, TDK, https://www.tdk-electronics.tdk.com/inf/30/ds/B82559B_A019.pdf
- [9] Heat sink profile, RS-Online, https://de.rs-online.com/web/p/kuhlkorper/1686330
- [10] Thermal interface material TIM, DOWSIL TC-4060 Thermal Gel, <u>https://www.dow.com/en-us/pdp.dowsil-</u> <u>tc-4060-thermal-gel.512275z.html?productCatalogFlag=1&#tech-content</u>
- [11] Motor load, Nanotc DB42S02, <u>https://en.nanotec.com/products/635-db42s02</u>
- [12] Current controlled hysteresis break, Mobac HB-50-2DS, https://www.mobac.de/fileadmin/user_upload/Mobac/PDF/strom/strom-stand-bs.pdf
- [13] User Manual TLE987x Microcontroller with LIN and BLDC MOSFET driver for automotive applications <u>https://www.infineon.com/dgdl/Infineon-TLE987x_UM-UserManual-v01_08-</u> <u>EN.pdf?fileId=8ac78c8c81ae03fc0181d38669525fab</u>
- [14] Reverse Rolarity Protection for Embedded Power ICs Application Note, https://www.infineon.com/dgdl/Infineon-Reverse Polarity Protection-AN-v01_00-EN.pdf?fileId=5546d46267c74c9a01684be08bf45dfb

Generic power evaluation board design for 12 V application - SSO8 and TLE9879QXA40

Reference documents

Revision history

Major changes since the last revision

Date	Version	Description
2023/09/12	1.0	First revision
		i de la companya de l
		We.
content availa	ble atternet teeth	Pistrevision First revision First revision Unter the set of the se

Document reference

nteren Technologisa Tenen Technologisa Technologisa Tenen Technologisa

intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

EVB-EP5348UI BQ25010EVM ISL80019AEVAL1Z ISLUSBI2CKIT1Z ISL8002AEVAL1Z ISL91108IIA-EVZ MAX8556EVKIT MAX15005AEVKIT+ ISL28022EVKIT1Z STEVAL-ISA008V1 DRI0043 KITPF8100FRDMEVM EVB-EN6337QA SAMPLEBOXILD8150TOBO1 MAX18066EVKIT# AP62300WU-EVM KITA2GTC387MOTORCTRTOBO1 AEK-MOT-TK200G1 EVLONE65W STEVAL-ILH006V1 STEVAL-IPE008V2 STEVAL-IPP001V2 STEVAL-ISA013V1 STEVAL-ISA067V1 STEVAL-ISQ002V1 TPS2306EVM-001 TPS2330EVM-185 TPS40001EVM-001 SECO-HVDCDC1362-15W-GEVB BTS7030-2EPA LT8638SJV#WPBF LTC3308AIV#WTRPBF TLT807B0EPV BTS71033-6ESA EV13N91A EASYPIC V8 OVER USB-C EV55W64A CLICKER 4 FOR STM32F4 EASYMX PRO V7A FOR STM32 CLICKER 4 FOR PIC18F Si8285_86v2-KIT PAC52700EVK1 NCP-NCV51752D2PAK3LGEVB ISL81807EVAL1Z AP33772S-EVB EVALM7HVIGBTPFCINV4TOBO1 903-0300-000 902-0173-000 903-0301-000 ROA1286023/1