

PNP Silicon High Voltage Transistor

- High breakdown voltage
- Low collector-emitter saturation voltage
- Complementary type: PZTA42 (NPN)

Туре	Marking	Pin Configuration				Package
PZTA92	PZTA 92	1=B	2=C	3=E	4=C	SOT223

Maximum Ratings

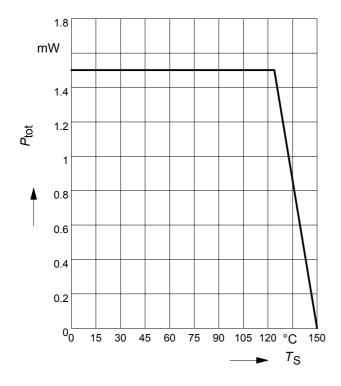
Parameter	Symbol	Value	Unit	
Collector-emitter voltage	V _{CEO}	300	V	
Collector-base voltage	V _{CBO}	300		
Emitter-base voltage	V _{EBO}	5		
DC collector current	I _C	500	mA	
Base current	l _B	100		
Total power dissipation, T _S = 124 °C	P _{tot}	1.5	W	
Junction temperature	T_{i}	150	°C	
Storage temperature	T _{stg}	-65 150		

Thermal Resistance

Junction - soldering point 1)	R _{th.IS}	≤17	K/W

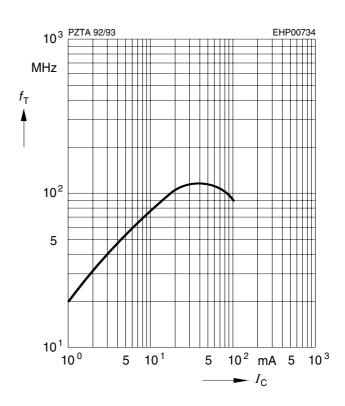
1

 $^{^{1}}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

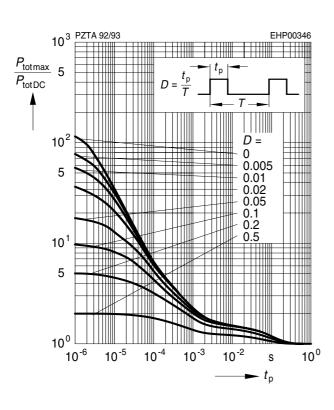

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol		Values		
		min.	typ.	max.	
DC Characteristics	•			•	•
Collector-emitter breakdown voltage	V _{(BR)CEO}	300	-	-	V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$, ,				
Collector-base breakdown voltage	$V_{(BR)CBO}$	300	-	-	
$I_{\rm C} = 100 \ \mu A, \ I_{\rm E} = 0$					
Emitter-base breakdown voltage	$V_{(BR)EBO}$	5	-	-	
$I_{\rm E} = 10 \ \mu \text{A}, \ I_{\rm C} = 0$, ,				
Collector cutoff current	l _{CBO}	-	-	250	nA
$V_{\text{CB}} = 200 \text{ V}, I_{\text{E}} = 0$					
Collector cutoff current	/ _{CBO}	-	-	20	μΑ
V_{CB} = 200 V, I_{E} = 0 , T_{A} = 150 °C					
Emitter cutoff current	/ _{EBO}	-	-	100	nA
$V_{EB} = 3 \text{ V}, I_{C} = 0$					
DC current gain 1)	h _{FE}				-
$I_{\rm C}$ = 1 mA, $V_{\rm CE}$ = 10 V		25	-	-	
$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 10 V		40	-	-	
$I_{\rm C}$ = 30 mA, $V_{\rm CE}$ = 10 V		25	-	-	
Collector-emitter saturation voltage1)	V _{CEsat}	-	-	0.5	V
$I_{\rm C}$ = 20 mA, $I_{\rm B}$ = 2 mA					
Base-emitter saturation voltage 1)	V _{BEsat}	-	-	0.9	
$I_{\rm C}$ = 20 mA, $I_{\rm B}$ = 2 mA					
AC Characteristics	,			•	,
Transition frequency	f _T	-	100	-	MHz
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 10 V, f = 100 MHz					
Collector-base capacitance	C _{cb}	-	-	6	pF
$V_{CB} = 20 \text{ V}, f = 1 \text{ MHz}$					

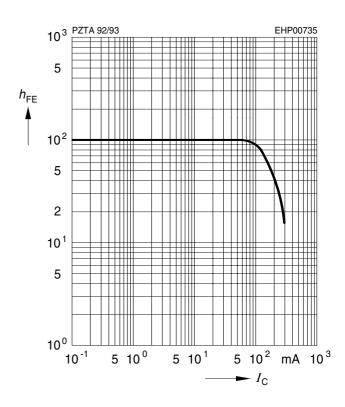
¹⁾ Pulse test: $t < 300\mu s$; D < 2%



Total power dissipation $P_{\text{tot}} = f(T_{\text{S}})$

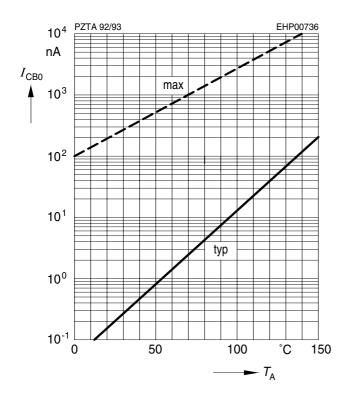

Transition frequency $f_T = f(I_C)$

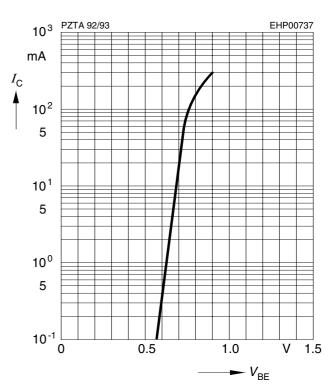
 $V_{CE} = 10V, f = 100MHz$


Permissible pulse load

 $P_{\text{totmax}} / P_{\text{totDC}} = f(t_p)$

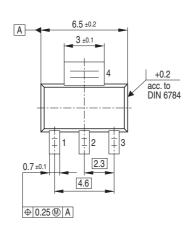
DC current gain $h_{FE} = f(I_C)$

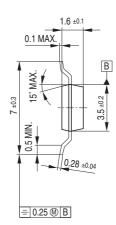

$$V_{CE} = 10V$$

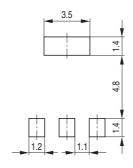

Collector cutoff current $I_{CBO} = f(T_A)$

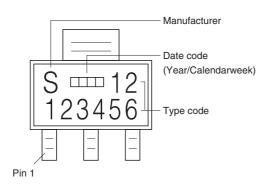
$$V_{CB} = 200V$$

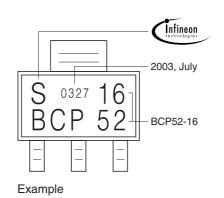
Collector current $I_{C} = f(V_{BE})$


$$V_{CE}$$
 = 10V

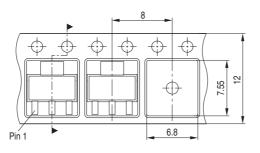



Package Outline





Foot Print


Marking Layout

Packing

Code E6327: Reel ø180 mm = 1.000 Pieces/Reel Code E6433: Reel ø330 mm = 4.000 Pieces/Reel

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München
© Infineon Technologies AG 2005.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E

MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E

FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G

NTE101 NTE13 NTE15