User manual for MERUS ${ }^{\text {TM }}$ MA120xxx reference boards
P100002130 REF_AUDIO_MA12040
P100002140 REF_AUDIO_MA12040P
P100002170 REF_AUDIO_MA12070
P100002180 REF_AUDIO_MA12070P

About this document

Scope and purpose

This is a reference and demonstration board for MA12040, MA12040P, MA12070 and MA12070P proprietary multi-level amplifiers.

This application note describes the functionality and set-up of the reference design (Sections 2 and 3). It also includes a schematic, PCB layout, BOM and a discussion of circuit design considerations (Section 4).
Measurement results (Section 5) show high performance in audio and efficiency parameters, as well as good thermal characteristics. Testing included a frequency sweep, output power sweep and electromagnetic interference tests. Finally, Appendix A provides sample code that demonstrates basic $I^{2} C$ communication using Arduino UNO.

Intended audience

Audio amplifier design engineers, audio system engineers and audio software engineers.

Board overview

Table of contents

About this document 1
Table of contents 2
1 Board overview. 3
1.1 General board specifications 4
$1.2 \quad$ RFB device type 4
1.3 Set-up guide 4
1.4 Board configuration 6
1.5 Device configuration through $I^{2} \mathrm{C}$ 7
2 Schematic, layout and design considerations 8
2.1 BOM 11
2.2 Design considerations. 12
3 Measurement results 13
3.1 Frequency sweep 13
3.2 Output power sweep 15
3.3 Output spectrum 16
3.4 Power consumption and efficiency 17
3.5 EMI radiated measurements 20
3.5.1 EMI measurement setup 20
3.5.2 EMI measurement results 20
4 Appendix A - sample code 25
Revision history 27

User manual for MA120xxx reference boards

Board overview

1 Board overview

The reference board (RFB) is a reference and demonstration board for Infineon's MA12040, MA12040P, MA12070 and MA12070P amplifiers. See the board in Figure 1 with MA12070 mounted.

It contains a variety of digital/analog input, output and set-up/selection features. It also contains one on-board power supply (5 V buck converter), so only one external power supply (PVDD) is necessary.

Figure 1 Reference board PCB

The board can be used for evaluating or demonstrating key features/advantages of the MERUS ${ }^{\text {TM }}$ Audio technology:

- Energy efficiency
- Power losses under normal user operating conditions (listening levels)
- Idle power loss
- Adaptive power management system
- No output filter components
- Solution cost and size reduction
- Audio performance
- THD performance and audio quality
- Fast product protyping
- All design files are available
- Guides as reference for product design-in

Board overview

1.1 General board specifications

- Number of audio channels
$2 \times$ BTL or $1 \times$ PBTL
- Audio input format:
- MA12040 and MA12070 Analog
- MA12040P and MA12070P Digital (I^{2} S)
- Supply voltage range MA12040(P) 5 to 18 V
- Supply voltage range MA12070(P) 5 to 26 V
- Maximum output current per channel MA12040(P) 6 A
- Maximum output current per channel MA12070(P) 8 A
- Output power capability at 18 V PVDD:
- Peak 2 x 40 W sine $1 \mathrm{kHz}(\mathrm{RMS})$ into $4 \Omega(10$ percent THD + N)
- Peak $2 \times 20 \mathrm{~W}$ sine $1 \mathrm{kHz}(\mathrm{RMS})$ into $8 \Omega(10$ percent THD + N)
- Continuous $2 \times 9.0 \mathrm{~W}$ sine $1 \mathrm{kHz}(\mathrm{RMS})$ into 4Ω (less than 0.08 percent THD + N)
- Output power capability at 26 V PVDD:
- Peak $2 \times 80 \mathrm{~W}$ sine $1 \mathrm{kHz}(\mathrm{RMS})$ into $4 \Omega(10$ percent THD + N)
- Peak $2 \times 40 \mathrm{~W}$ sine $1 \mathrm{kHz}(\mathrm{RMS})$ into 8Ω (10 percent THD + N)
- Continuous $2 \times 9.0 \mathrm{~W}$ sine $1 \mathrm{kHz}(\mathrm{RMS})$ into 4Ω (less than 0.02 percent THD + N)
- Amplifier gain (MA12040 and MA12070 only)

20 dB or 26 dB (register configurable)

- Output integrated noise:
- MA12040 and MA12070
Less than $100 \mu \mathrm{~V}_{\text {rms }}$ (AW)
- MA12040P and MA12070P
Less than $150 \mu \mathrm{~V}_{\text {rms }}$ (AW)
- Dynamic range:
- MA12040 and MA12070 More than 100 dB
- MA12040P and MA12070P More than 96 dB
- Idle current consumption at 18 V PVDD:
- MA12040 and MA12070 Less than 16 mA
- MA12040P and MA12070P Less than 19 mA

Note: Idle consumption is the sum of output stage current and 5 V supply current. As all the supplies are tied to PVDD, the efficiency of the buck converter 5 V should be taken into account when measuring idle current consumption directly from PVDD. Please refer to the MA120xx/P device datasheet for exact current figures.

$1.2 \quad$ RFB device type

The type of device (MA12040, MA12040P, MA12070 and MA12070P) on the RFB is printed on the top of the device, and is also stated on the serial number label placed on the bottom side of the PCB.

1.3 Set-up guide

The RFB works out of the box with speakers, input source and power connected. No external configuration or set-up is needed for quick start-up.

Board overview

Figure 2 shows the top view of the board assembly. The board has following key features, which are indicated by corresponding numbers marked with red.

1. PVDD power connector: connect PVDD 5 V to 18 V for MA12040(P) or connect PVDD 5 V to 26 V for MA12070(P)
2. BTL output connection channel 0
3. BTL output connection channel 1
4. PAUDIO: signal input connector:

- For MA12070 devices:
- Pin 5: ANOA - analog input A channel 0
- Pin 4: ANOB - analog input B channel 0
- Pin 3: GND
- Pin 2: AN1A - analog input A channel 1
- Pin 1: AN1B - analog input B channel 1
- For MA12070P devices:
- Pin 5: SCK - I^{2} S bit clock
- Pin 4: WS - $I^{2} S$ word clock
- Pin 3: GND
- Pin 2: SDO - I^{2} S audio data
- Pin 1: CLK - I ${ }^{2}$ S master clock

5. PCTRL external communication:

- Pin 5: SCL - $I^{2} \mathrm{C}$ clock
- Pin 4: SDA $-I^{2} C$ data
- Pin 3: GND
- Pin 2: /ENABLE - enable or disable the amplifier
- Pin 1: /MUTE - mute or unmute the amplifier

6. MA12040, MA12040P, MA12070 or MA12070P Eximo multi-level amplifier IC
7. Buck regulator: TPS62175 - for generating 5 V supply

Board overview

Figure 2 Schematic top view of component and connector assembly

1.4 Board configuration

The board is shipped with a default configuration for automatic start-up, two channels of BTL output, and default internal register settings. It is however possible to operate the board in different modes. The following configurations are possible:

- BTL or PBTL output configuration:
- BTL: RPBTL unmounted; RBTL mounted
- PBTL: RPBTL mounted; RBTL unmounted
- External control of the /ENABLE pin: RENABLE unmounted
- External control of the /MUTE pin: RMUTE unmounted

The board can carry MA12040(P) or MA12070(P) devices. Depending on which device is placed, the following configurations apply for:

- MA12040 and MA12070:
- CAPINOA, CAPINOB, CAPIN1A and CAPIN1B are mounted
- RCLK_ANA mounted; RCLK_DIG unmounted
- RCLK unmounted
- MA12040P and MA12070P:
- CAPINOA, CAPINOB, CAPIN1A and CAPIN1B replaced by jumpers
- RCLK_ANA unmounted; RCLK_DIG mounted
- RCLK mounted

User manual for MA120xxx reference boards

Board overview

1.5 Device configuration through $I^{2} C$

Multi-level technology offers the possibility to optimize for audio performance, efficiency or EMI. Depending on the application, typically one parameter is more important than the others. The amplifiers offer the flexibility to make this design trade-off by the use of different optimal modes (Power Mode Profiles or PMP), selected through internal register settings. The RFB uses the MA120XXX in the default PMPO, which optimizes the amplifier operation for highest power efficiency in the low to mid output power region. For a complete overview of device configurations, please refer to the datasheets.
$1^{2} \mathrm{C}$ is used to read and write the internal registers. SCL and SDA can be accessed through Pin 5 and Pin 4 on the PCTRL header (see previous section). Figure 3 shows how to set up $I^{2} \mathrm{C}$ communication using an Arduino UNO. Sample code for $I^{2} C$ set-up can be found in Apendix A - sample code.

Figure 3 Arduino $I^{2} \mathrm{C}$ communication to the RFB

Schematic, layout and design considerations

2 Schematic, layout and design considerations

Figure 4
Reference board schematic

Schematic, layout and design considerations

Figure 5
Top side of the PCB layout

Schematic, layout and design considerations

Figure 6 Bottom side of the PCB layout

The RFB is cost optimized. The cost of one module including PCB, components and assembly is estimated to be $\$ 2.15$ at a volume of 1000 pieces. The price of the MA120xx (P) amplifier depends on the volume and part. For performance optimization see the application note "EMC output filter recommendation" or contact Infineon.

Schematic, layout and design considerations

2.1 BOM

Table 1 RFB BOM

Designator	Description	Manufacturer	Part number	Quantity
C0A, C0B, C1A, C1B	$\begin{gathered} \text { CAP, } 1000 \mathrm{pF}, \pm 10 \text { percent, } \mathrm{X} 7 \mathrm{R}, 50 \mathrm{~V} \text {, } \\ 0402 \end{gathered}$	TDK	C1005X7R1H102K050BA	4
CAPIN0A, CAPIN0B, CAPIN1A, CAPIN1B	$\begin{gathered} \text { CAP, } 1 \mu \mathrm{~F}, \pm 10 \text { percent, } \mathrm{X} 5 \mathrm{R}, 10 \mathrm{~V}, \\ 0402 \end{gathered}$	Multicomp	MC0402X105K100CT	4
CAVDD0, CCDC, CCREF, CFDC, CGD0, CGD1, CVGDC, DVDD0	$\begin{gathered} \hline \mathrm{CAP}, 1 \mu \mathrm{~F}, \pm 10 \text { percent, } \mathrm{X} 7 \mathrm{R}, 25 \mathrm{~V} \text {, } \\ 0603 \end{gathered}$	Multicomp	MC0603X105K250CT	8
CFOAO, CFOA1, CFOB0, CF0B1, CF1A0, CF1A1, CF1B0, CF1B1	$\mathrm{CAP}, 10 \mu \mathrm{~F}, \pm 10$ percent, $\mathrm{X} 5 \mathrm{R}, 25 \mathrm{~V}$, 0805	TDK	TMK212BBJ106MG-T	8
CFGD, CGDONO, CGD1N0, CPVDD0A, CPVDD1A	$\begin{gathered} \mathrm{CAP}, 0.1 \mu \mathrm{~F}, \pm 10 \text { percent, } \mathrm{X} 7 \mathrm{R}, 50 \mathrm{~V}, \\ 0603 \end{gathered}$	Multicomp	MC0603B104K500CT	5
CGD0N1, CGD1N1, CPVDD0B, CPVDD1B	$\begin{gathered} \hline \mathrm{CAP}, 1 \mu \mathrm{~F}, 50 \mathrm{~V}, \pm 10 \text { percent, } \mathrm{X} 5 \mathrm{R}, \\ 0805 \end{gathered}$	Multicomp	MC0805X105K500CT	4
CIN0, CIN1	$\begin{gathered} \mathrm{CAP}, 0.022 \mu \mathrm{~F}, \pm 10 \text { percent, X7R, } 50 \\ \mathrm{~V}, 0402 \end{gathered}$	Murata	GRM155R71H223KA12D	2
CINBUCK	CAP $2.2 \mu \mathrm{~F} 50 \mathrm{~V} \pm 10$ percent, 0805	Taiyo Yuden	UMK212BB7225KG-T	1
COUTBUCK	CAP $22 \mu \mathrm{~F} 50 \mathrm{~V} \pm 10$ percent 0805	Murata	GRM21BR61A226ME51L	1
CSUP1, CSUP2	Electrolytic cap, UWT series, $100 \mu \mathrm{~F}$, $35 \mathrm{~V}$	Nichicon	UWT1V101MCL1GS	2
L0A, L0B, L1A, L1B	SMD ferrite bead, $\mathrm{Z}=56 \Omega$	Fair-Rite	2512065007 Y 6	4
LBUCK	SRN4026-150M	Bourns	SRN4026-100M	1
LSUP	SMD ferrite power bead, $Z=47 \Omega$	Fair-Rite	2743019447	1
RAD00, RAD11, RBTL, RCLK_ANA, RENABLE, RMUTE, RPBTL	Jumper 0201 (0603 metric)	Yageo	RC0201JR-070RL	7
RB_FB1	2 M 0.063 W 1 percent 0402 (1005 metric) SMD	Yageo	RC0402FR-072ML	1
RB_FB2	383 K 0.063 W 1 percent 0402 (1005 metric) SMD	Yageo	RC0402FR-07383KL	1
RB_PG	100 K 0.063 W 1 percent 0402 (1005 metric) SMD	Yageo	RC0402FR-07100KL	1
U1	Multi-level Class D amplifier	Infineon	MA120xx	1
U2	TPS62175DQCT	TI	TPS62175DQCT	1

Schematic, layout and design considerations

2.2 Design considerations

The RFB is elegant because of its small form factor, while still being able to operate at up to 80 W output power per channel. This is possible due to the multi-level technology of the MA12070 and MA12070P devices.

- Thermal considerations:
- Power-efficient operation allows heatsink-free operation because the bottom layer of the PCB design (connected to the heatsink pad of the IC) is sufficient for cool operating conditions. This holds when considering playback of real audio signals.
- Figure 5 and Figure 6 show the top and bottom PCB design respectively. It can be seen that all the component placement and main routing is done on the top layer.
- It is important to have as little routing as possible on the bottom layer since it needs to be optimized for thermal heat flow.
- Routing done on the bottom layer is chosen in such a way that it still allows for good thermal heat flow. In this way, the complete bottom plate can function as a heatsink for the amplifier IC.
- Vias placed between bottom and top ground planes add to the copper mass that functions as a heatsink.
- Filterless operation:
- Multi-level technology also significantly reduces out-of-band noise, which allows LC filter-free operation. Only a small, SMD-sized EMI filter is needed.
- Figure 1 shows the footprint and PCB size it takes. The board size is significantly reduced due to a small-sized EMI filter compared to a bulky LC filter.
- The use of an LC filter is also not needed to optimize the efficiency of the amplifier. The speaker's inductive behavior is sufficient for efficient operation of the amplifier. This is again enabled by reduced out-of-band noise of the amplifier.
- Buck regulator:
- A buck regulator (TPS62175) has been included in the design to derive a 5 V rail from the PVDD input rail. 5 V is needed as the core supply voltage for the MA120xx (P). TPS62175 has been chosen to balance the need for cost, efficiency and size. The current design of the buck regulator generates 5 V from 26 V PVDD with approximately 85 percent efficiency. Efficiency could have been increased by increasing the inductance, which would have increased the footprint; Infineon opted for a smaller footprint instead.

Measurement results

3 Measurement results

This section shows the measurement results from tests performed on a reference board, which demonstrate high audio and efficiency performance and good thermal characteristics.
Measurements include:

- Frequency sweep
- Output power sweep
- Output spectrum
- Power consumption and efficiency
- EMI

All measurement results were obtained using the following settings:

- Device: MA12070
- Two-channel BTL configuration
- Load: $4 \Omega+22 \mu \mathrm{H}$ series inductance
- PVDD: 18 V
- Gain setting: 20 dB
- PMP: default PMPO
- Measurements carried out with APx 515 + AUX-0025 input filter
- APx uses AES17 brick-wall filter (20 kHz)

$3.1 \quad$ Frequency sweep

Frequency sweeps were carried out with both channels at 1 W output power. To improve the gain drop at 20 Hz , use larger input capacitors.

Figure $7 \quad$ Gain vs. frequency

Measurement results

Figure 8
THD + N vs. frequency

To improve the THD + N performance use high-performance ferrite beads. See the application note - EMC output filter recommendations at www.Infineon.com

User manual for MA120xxx reference boards

Measurement results

$3.2 \quad$ Output power sweep

Output power sweeps were carried out on both channels with a 1 kHz input signal.

Figure 9
THD + N vs. output power

Measurement results

$3.3 \quad$ Output spectrum

The Figure 10 shows the output spectrum that has been obtained by applying $1 \mathrm{mVrms}(1 \mathrm{kHz})$ input signal to both channels. This gives an output signal of -40 dBV . The noise floor for these settings is shown in the Figure 10. The integrated, A-weighted noise floor number for both channels is $70 \mu \mathrm{Vrms}$ (AW).

Figure 10
Output FFT spectrum

Measurement results

Figure 11 Scope capture showing $10 \mathrm{mV}_{\text {rms }}$ output signal on both channels

3.4 Power consumption and efficiency

Power consumption and efficiency measurements were obtained by using a test signal of 1 kHz and a load of 4 Ω with $22 \mu \mathrm{H}$ series inductance. Power consumption was calculated using the RMS method.

Figure 12
Input power as a function of output power

Measurement results

Figure 13 Power loss as a function of output power

Figure 14 Efficiency as a function of output power (log scale)

Measurement results

Figure 15 Efficiency as a function of output power (linear scale)

Measurement results

3.5 EMI radiated measurements

3.5.1 EMI measurement setup

Figure 16 EMI measurement set-up for radiated emission test

Figure 16 shows the set-up for testing.
Measurement results were obtained under the following conditions:

- Linear power supply: 18 VPVDD
- Pink noise test signal output power at 20 dB gain $=1 \mathrm{~W}$ average output power per channel
- Speaker cable length: 10 cm
- Amplifier load: 4Ω speaker (Visaton FR 10 WP)
- EMI filter: Murata ferrite BLE32PN300SN1L + 1 nF capacitor
- Pi filter on PVDD - Würth ferrite $74279221100+2 \times 22 \mathrm{nF}$ capacitor

3.5.2 EMI measurement results

EMI-radiated results were collected for the reference board using four scenarios:

- Board was positioned toward the antenna and the antenna was vertical (Figure 17)
- Board was positioned toward the antenna and the antenna was horizontal (Figure 18)
- Board was positioned perpendicular to the antenna and the antenna was vertical (Figure 19)
- Board was positioned perpendicular to the antenna and the antenna was horizontal (Figure 20)

Measurement results

Figure 17 EMI-radiated measurement results. Board positioned toward antenna. Antenna position is vertical.

Measurement results

Figure 18 EMI-radiated measurement results. Board positioned toward antenna. Antenna position is horizontal.

Measurement results

Figure 19 EMI-radiated measurement results. Board positioned perpendicular to the antenna. Antenna position is vertical.

Measurement results

Figure $\mathbf{2 0}$ EMI-radiated measurement results. Board positioned perpendicular to the antenna. Antenna position is horizontal.

Appendix A - sample code

4 Appendix A - sample code

/*
*Title: $I^{2} \mathrm{C}$ basic communication set-up

* Author: Rien Oortgiesen
* This code demonstrates basic $I^{2} C$ communication
* using Arduino UNO together with MA120XXX devices
* Use:
* The code uses $I^{2} C$ lib from Wayne Truchsess which allows repeated
* start and can be used in an interrupt service routine
*

${ }^{*} I^{2} \mathrm{C}$ hardware config:

* Uno breakout: SCL = A5; SDA = A4 GND = GND;
* Reference board CONN_COM: SCL = pin 4; SDA = pin 3; GND = pin 2
*
* Revisions:
* D1a: use of external lib initial test working
* F : final version for demonstration
*
* This code is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
\#include < 12C.h>
const byte LED = 13; // LED pin number
const byte BUTTON = 2; // BUTTON pin number
volatile int state = LOW;
// Interrupt Service Routine (ISR)
void switchPressed ()
\{
state $=$!state; // change state
digitalWrite(LED, state); //write state to LED
write_I2C(state); //jump to $I^{2} \mathrm{C}$ handling
\}
void setup ()
\{
pinMode (LED, OUTPUT); // so we can update the LED
digitalWrite (BUTTON, HIGH); // internal pull-up resistor

User manual for MA120xxx reference boards

Appendix A-sample code

// attach interrupt handler (0 is the internal interrupt attached to pin 2) attachInterrupt (0 , switchPressed, RISING);
// start with LED off
digitalWrite(LED, 0);
// set audio_in_mode_ext
12c.begin();
12c.write(0x20,0x27,0x28); //audio_in_mode_ext = 1
I2c.end();
// set in 26dB audio_in_mode
12c.begin();
12 c.write($0 \times 20,0 \times 25,0 \times 30$); //audio_in_mode = 1
I2c.end();
// set in 20dB audio_in_mode
//I2c.write(0x20,0x25,0x10); //audio_in_mode = 0
//digitalWrite(LED, 0);
\} // end of setup
void loop ()
\{
// wait for interrupt
\}
void write_I2C (bool dB)
\{
12c.begin();
if($d B==$ true)
\{
12c.write(0x20,0x25,0x30); //audio_in_mode = 1
\}
else
\{
12c.write($0 \times 20,0 \times 25,0 \times 10$); //audio_in_mode $=0$
\}
I2c.end();
\}

Appendix A - sample code

Revision history

Document version	Date of release	Description of changes
1.0	$24-01-2019$	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2019-04-28

Published by

Infineon Technologies AG
81726 Munich, Germany

© 2019 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

UM_1902_PL88_1902_171735

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology delivery terms and conditions and prices pleas contact your nearest Infineon Technologies offic ϵ (www.infineon.com).

WARNINGS

Due to technical requirements products may contair dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed b) authorized representatives of Infineor Technologies, Infineon Technologies' products mas not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Audio IC Development Tools category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
1580/5171-DEMO LM4906MMBD LM4935RLEVAL LME49710NABD LME49740MABD LME49740NABD LME49860MABD
LME49870MABD EVAL-AD1940AZ EVAL-ADAU1401AEBZ SRC4382EVM-PDK TLV320AIC36EVM-K TLV320DAC3120EVM-U
TPA5052EVM TPA6136A2YFFEVM LM4562HABD LM4906LDBD LM4923LQBD LM4992SDBD LME49710MABD
LME49713MABD LME49860NABD EVAL-SSM2518Z MAX98300EVKIT+WLP MAX9738EVKIT+ MAX98358EVSYS\#WLP MAX9723DEVKIT+ EVAL-ADAV803EBZ MAX9890EVKIT+ MAX9709EVKIT LM4809MBD LM4674TLBD CDBWM8725-M-1 CDBWM8533-M-1 EV_ICS-40740-FX SDCK3 PIM524 DEV-17737 EVALAUDIOI2SCOMTOBO1 EVALAHNBIM69D130V01TOBO1 1063 TAS5756MDCAEVM TLV320ADC3101EVM-K TLV320AIC3007EVM-K TLV320AIC3105EVM-K TLV320AIC3253EVM-K TLV320DAC32EVM-PDK TPA2016D2EVM TPA2035D1EVM TPA2051D3YFFEVM

