

REF_Fridge_D111T_RC2_SL user guide

Refrigerator compressor driver reference design kit

About this document

Scope and purpose

This user guide provides an overview of the reference design board REF_Fridge_D111T_RC2_SL including its main features, key data, pin assignments and mechanical dimensions, and the guidance on how to run and design the motor with board.

The REF_Fridge_D111T_RC2_SL board is a complete reference design board designed for refrigerator compressors. It demonstrates the whole Infineon solution including digital motor control IC iMOTION[™] Driver IMD111T-6F040 and the newest 600 V discrete RC-D2 IGBT IKD04N60RC2.

The REF_Fridge_D111T_RC2_SL board is developed to support customers in designing their refrigerator compressor drive stage with Infineon products.

Intended audience

This user guide is intended for technical specialists working with the REF_Fridge_D111T_RC2_SL board and refrigerator compressor driver design.

Reference board/kit

Product(s) are embedded on a PCB, with focus on specific applications and defined use cases that can include software. PCB layout and auxiliary circuits are optimized for the requirements of the target application.

Note: Boards do not necessarily meet safety, EMI, quality standards (for example UL, CE) requirements.

Important notice

"Evaluation Boards and Reference Boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "Reference Board").

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

Safety precautions

Safety precautions

Note:

Please note the following warnings regarding the hazards associated with development systems.

Table 1	Safety precautions
	Warning: The DC link potential of this board is up to 400 VDC. When measuring voltage waveforms by oscilloscope, high voltage differential probes must be used. Failure to do so may result in personal injury or death.
	Warning: The evaluation or reference board contains DC bus capacitors which take time to discharge after removal of the main supply. Before working on the drive system, wait five minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.
	Warning: The evaluation or reference board is connected to the grid input during testing. Hence, high-voltage differential probes must be used when measuring voltage waveforms by oscilloscope. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.
	Warning: Remove or disconnect power from the drive before you disconnect or reconnect wires, or perform maintenance work. Wait five minutes after removing power to discharge the bus capacitors. Do not attempt to service the drive until the bus capacitors have discharged to zero. Failure to do so may result in personal injury or death.
	Caution: The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.
	Caution: Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.
	Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.
	Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.
	Caution: The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.

Table of contents

About	About this document			
Impo	mportant notice			
Safet	y precautions	3		
Table	of contents	4		
1	The reference board at a glance	5		
1.1	Delivery content	.5		
1.2	Block diagram	.6		
1.3	Main features	.7		
1.4	Board parameters and technical data	.8		
2	System and functional description	9		
2.1	Commissioning	.9		
2.1.1	Hardware connection	10		
2.1.2	Software/firmware preparation	10		
2.1.3	Program firmware/parameters/script	11		
2.1.4	Open-loop diagnostic	13		
2.1.5	Closed-loop run	14		
2.2	Description of the functional blocks	15		
2.2.1	Inverter stage	15		
2.2.2	EMI filter	16		
2.2.3	DC bus sensing and MCEWizard configuration	17		
2.2.4	Current sensing and overcurrent protection	18		
2.2.4.	1 Current sensing	18		
2.2.4.2	2 Overcurrent protection	20		
2.2.5	NTC sensing and thermal protection	20		
2.3	Frequency-signal interface	22		
3	System design	24		
3.1	Schematics	24		
3.2	Layout	24		
3.3	Bill of material	25		
3.4	Connector details	26		
4	System performance	28		
4.1	Thermal characterization	28		
4.2	Electromagnetic interference (EMI) conducted	29		
4.3	Electrical fast transient (EFT) test	34		
4.4	IGBT dV/dt test	34		
5	Reference and appendices	36		
5.1	Abbreviations and definitions	36		
5.2	References	36		
5.3	Additional information	36		
Revis	ion history	37		

1 The reference board at a glance

The REF_Fridge_D111T_RC2_SL reference design kit is a part of the iMOTION[™] reference design kit for motor drives, which is aimed for refrigerator-compressor driver applications. The kit is a ready-to-use solution in combination with full Infineon products such as the newest RC-D2 IGBT, and the motor-control driver iMOTION[™] IMD111T-F040. It can be easily translated into a mass production board for refrigerator compressor to speed up the development phase and achieve fast time to market.

The REF_Fridge_D111T_RC2_SL reference board is available from Infineon. The features of this board are described in Chapter 1.3 of this document (UG-2021-31). The remaining sections provide information to enable customers to re-use, modify and qualify the design for production according to the specific requirements.

Environmental conditions have been considered in the design of the REF_Fridge_D111T_RC2_SL. The design was tested as described in this document, but not qualified in terms of safety requirements or manufacturing and operation over the whole operating temperature range or lifetime. The boards provided by Infineon are subject to functional testing only.

The boards are not subject to the same procedures as regular products in terms of returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD). Evaluation boards are intended to be used under laboratory conditions by specialists only.

1.1 Delivery content

The scope of delivery contains only the board as shown in Figure 2. The detailed ordering information is indicated in Table 2.

The iMOTION[™] Link shown in the Figure 5 is mandatory for tuning the board firmware, and is not included in the delivery content. It can be ordered separately according to the details in Section 5.3.

Table 2Delivery content

Base part number	Package	Standard pack		Orderable part number
		Form	Quantity	
REF Fridge D111T RC2 SL		Boxed	1	REFFRIDGED111TRC2SLTOB01

The reference board at a glance

1.2 Block diagram

Figure 1 Block diagram of the REF_Fridge_D111T_RC2_SL reference board

Figure 1 shows the block diagram of reference design kit REF_Fridge_D111T_RC2_SL.

Figure 2 and Figure 3 depict the functional groups of the board. The details of the connectors are described in section 3.4.

Figure 2 Functional groups on bottom side of board

The reference board at a glance

Figure 3 Functional groups on top side of board

1.3 Main features

REF_Fridge_D111T_RC2_SL is a complete reference design board for refrigerator-compressor applications. Main features of the board include:

- iMOTION™ Driver IMD111T-6F040: ready-to-use motion controller with scripting engine and 6-channel silicon on insulator (SOI) driver
- RCD2-600 V IGBT for lowest EMI and losses
- System solution enables highly integrated, flexible design and lowest EMI

600 V RC-D2 is the successor of the RC-DF IGBT. The diode is monolithically integrated, which makes this technology suited for consumer drives. The current rating of the diode was optimized in order to make this product even more competitive in terms of price and performance. The RC-D2 is also the first IGBT family to introduce the SOT-223 package. This package further improves the price due to its smaller size, and is pin-to-pin compatible and replaceable with the DPAK package, fitting the same footprint. Main features of 600 V RC-D2 IGBT compared to RC-DF include ^[1]:

- Adequate performance at competitive price
- Sufficient di/dt controllability in order to reduce electromagnetic noise
- Improved humidity robustness (HV-H3TRB test passed)
- Wide portfolio with current class range from 4 A to 15 A in DPAK

Main features of iMOTION[™] Driver IMD111T-6F040 include ^[2]:

- Motion Control Engine (MCE 2.0)
 - Single or leg shunt current measurement

- Motor control algorithm (Sensor-less / Hall-based FOC)
- Optional control for boost & totem pole PFC
- Protection features
 - Dead time insertion and shoot-through prevention
 - Overcurrent / overvoltage / undervoltage lockout
- High-voltage, three-phase gate driver with 600 V blocking voltage
- 15 V supply voltage for gate driver
- LQFP-40 package

For more information about the above-mentioned products, refer to the corresponding reference materials.

1.4 Board parameters and technical data

Parameter	Symbol	Conditions / comments	Value	Unit		
Operation input voltage	V_{ac}	Lower AC input, less motor power output	165~270	V_{rms}		
Maximum input current	I _{ac(max)}	Input 220 V _{AC} , T _a =25°C	1.8	A _{rms}		
Maximum input power	P _{in(max)}	Input 220 V _{AC} , f_{PWM} =5 kHz, T _a =25°C, T _{case} =100°C without heat sink	250	W		
Maximum motor current	I _{mtr(max)}	Input 220 V _{AC} , f_{PWM} =5 kHz, T_a =25°C, T_{case} =100°C without heat sink	1.2	A _{rms}		
Maximum DC bus voltage	$V_{dc(max)}$		400	V		
Shunt resistance	R_{sh}		250	mΩ		
Protection						
Current protection trigger level	I _{trip}	Set in the MCEWizard	-	A_{peak}		
Thermal protection level	T _{protection}	Recommended is a setting of maximum 105°C for the case temperature of IGBT, considering the gap, set 100°C in the MCEWizard	105	°C		
Auxiliary power supply 1	– 15 V					
Output voltage	V _{out1}	Used for IMD111T-6F040, integrate 5 V LDO in the IMD111T-6F040	15 ± 5%	V		
Maximum output current	I _{out1}		100	mA		
PCB characteristics						
Dimension		Length × width × height	115×105 ×40	mm		
Material		1.6 mm thickness, 1 oz. copper	FR4			
System environment						
Ambient temperature	Ta	Non-condensing, maximum RH of 95%	0~50	°C		

Table 3 REF_Fridge_D111T_RC2_SL board specifications

Refrigerator compressor driver reference design kit

System and functional description

2 System and functional description

2.1 Commissioning

Figure 4 Basic process for running the motor the first time

This section describes how to get the system working when the user first installs the board (refer to Figure 4 for general steps). The following items detail these steps. For those who are already familiar with the system, or have already run the board, unnecessary steps can be skipped depending on user's actual situation. For more in-depth commissioning process requirements, please refer to the MCE reference manual or the corresponding reference material ^{[4][5][6]}.

Refrigerator compressor driver reference design kit

System and functional description

2.1.1 Hardware connection

Figure 5 shows the hardware connection details for the reference design board.

<u>iMOTION[™] Link</u> cable is needed to bridge the PC/debugger side and motor drive system (the target iMOTION[™] device, hot side) with 1 kV DC galvanic isolation. Users can go to Section 5.3 for more information about iMOTION[™] Link.

- 1. Connect iMOTION[™] Link's 8-pin cable to X7 with default pin order, and connect PC and iMOTION[™] Link with the USB wire.
- 2. Then connect AC power supply (X1) and the motor (X2).

Figure 5 Hardware connection details

2.1.2 Software/firmware preparation

- The iMOTION[™] software tools, MCEDesigner and MCEWizard, are required to set up the system, as well as to control and fine-tune the system performance to match users' needs. These tools are available for download via the Infineon website (<u>http://www.infineon.com/imotion-software</u>). Please check this page periodically for tool/software updates.
- 2. The MCE firmware then has to be downloaded on our website; select the proper version of the firmware based on your requirements. Included in the package are the firmware ('.ldf'), default parameters ('.txt'), default map file ('.map'), the file for the MCEDesigner ('.irc') and other documents.
- 3. Generate your parameters' file.
- Use MCEWizard to enter the target motor's system and operating parameters, as well as reference board's hardware parameters, which will then be used to calculate the controller's digital parameter set, representing the complete motor drive system.

- After system and operating parameters are set, go to the "Verify & Save Page" and click on "Calculate" button. If no errors are reported, then save the drive parameter set in your project directory by clicking "Export to Designer file (.txt)" (Figure 8); if some errors are detected, double-click on the error message (highlighted in RED) and adjust the related parameters. Saved Drive System Parameter File will be later used for programmers.
- After you log-in on myInfineon, you could download the default MCEWizard file (.mc2) for this Note: board; you only need to modify the parameters related to your motor to make things easier and save time.
- 4. Generate the script if available. For users who are running the board for the first time, it is recommended not to use this function first, but to add the script function after the motor performance commissioning is completed.

Program firmware/parameters/script 2.1.3

The REF_Fridge_D111T_RC2_SL reference design kit is shipped with pre-programmed firmware and default parameters, since the functional tests are performed before the shipment. Users need to program their parameters, as the motor may be different from the one under test.

The following steps have to be performed in order to program the blank IMD111T-6F040:

- Program the firmware of the MCE •
- Program parameter sets for system and motor •
- Program customer script file (optional) ٠
- Or
- Program the combined file, which is generated by MCEWizard and contains all three items above. Customer • script file is optional depending on whether it is available. The combined file is usually used for production, since it only needs to be programmed once.

The programming process is as follows:

- 1. Start the MCEDesigner tool and open MCEDesigner default configuration file ('.irc') for IMD111T device (IMD111T_Vxxx.irc) by clicking "File" > "Open."
- The IMD111T_Vxxx.irc file is included in the downloaded firmware package "IMD111T MCE Note: Software Package."
- 2. Power the iMOTION[™] control IC with 3.3 V. It is recommended to program the IC with the 3.3 V isolated power supply that comes from the iMOTION[™] Link; there is a switch on the iMOTION[™] Link to enable the 3.3 V output. The iMOTION[™] control IC will also be powered by the on-board auxiliary power supply after the AC source is powered. Caution must be taken in the latter case due to high voltage.
- The output voltage of LDO combined in the IMD111T-6F040 is 5 V, i.e. the controller of IMD111T-Note: 6F040 is powered by 5 V. However, it is also possible to use the 3.3 V power supply in the iMOTION[™] Link to power the IMD111T-6F040 (for programmers).
- 3. MCEDesigner should automatically connect to the board using default COM port (indicated by green circle next to "COMx Up" status in the bottom frame of the MCEDesigner GUI) when iMOTION[™] control IC is powered. If it cannot establish the connection due to an incorrect COM port, change the COM port by doing

the following: click on the "System Page" window and then click on "Preferences > Connection > Connect using," and choose one of the other available COM ports from the drop-down list.

4. (In case of a blank IC) If the firmware has been erased from the IMD111T-6F040, the following warning message will pop up "Target device firmware and parameters file are not programmed! Please program firmware and parameters file" as Figure 6. Then you can program the firmware and parameters as described in Step 5. If it is not a blank IC, no such message will be indicated.

MCEDesigner	×
target device firmare and parameters files are not programmed! Please program firmare and parameters files.	
OK	

Figure 6 MCEDesigner warning message

5. Use the following steps to program the firmware and the parameters' file into the internal Flash memory of iMOTION[™] Control IC: click on system page, click "Tools" > "Programmer" and select "Program Firmware and Parameters," shown as in Figure 7 below. The encrypted firmware is available at "IMD111T MCE Software Package;" regarding the parameters file, browse and select the'.txt' file in the section 2.1.2.

Program IMC controller	? ×
Information DLL Version: V1.03.01 Release Time: 2019-11-26 Connection Po	rt: COM7
Operation Options Program Parameters Program Firmware and Parameters Program Script Pro	gram Combined File
Program Parameter File Select Parameter, document type(*.txt)	Browse
Program Firmware File Select firmware, document type(*.ldf)	Browse
Program Script File	Browse
Program Combined	Browse
Start	Cancel

Figure 7 Program the parameters and firmware

File Jump to Page Help		
Verify & Save Page		•
	Verify Parameters	
Calculate Parameters	Display Parameters Results	Export to MCEDesigner File (.txt)
Double-Click an item to JUMP to its associa	ted question	
Information #1 : Firmware Version Firmware Version is v1.03.x	∝ [For(.x), means any min version betwee	n .0 to .9]
Information #2 : System DC Bus Feedback The DC Bus Feedback Scalir	k Scaling ng is 8.11 counts/Volt and max measurable	voltage is 505.00V
Information #3 : Motor 1 Current Feedback Scaling The Motor Current Feedback Scaling is 1127.06 counts/Apk and range is -1.81 to +1.82 Apk		
Information #4 : System Configuration Op ->MCE Device OverCurrent ->Motor Current Sensing Ra ->Current Feedback Type: ->Angle Feedback: Flux PLL ->Motor Control Mode: Spe ->Application Control Input:	otions Level: 1.5 A ange -1.81 to +1.82 Apk Single Shunt Angle ed Control : UART	
Previous		Next

Figure 8 MCEWizard verify and save page

2.1.4 Open-loop diagnostic

Double-click the "VF Diagnostic" function in the window of motor1, and monitor motor current with oscilloscope. If the motor current is not sinusoidal, change register TargetSpeed and Vd_Ext in the VF Diagnostic sub-function, then double-click "VF Diagnostic" until the oscilloscope shows a steady sinusoidal current with an amplitude of 30~50% motor rate current.

Double-click "Iu & Iv_Slow" in System page > Monitor Definitions. The motor current feedback should be very clean and sinusoidal, as shown in Figure 9; otherwise please tune "Gating Propagation Delay & Phase Shift Window Size" in MCEWizard.

"VF Diagnostic" sub-function can verify whether:

- The motor is connected correctly
- The power stage works as expected
- Current-sensing related parameters are correctly configured
- The PCB layout and DC bus decoupling have been done correctly

After "VF Diagnostic" is done, click STOP button (the red traffic light button) or run "stop motor" function to stop the motor.

Figure 9 Trace waveform for Iu & Iv open loop diagnostic

2.1.5 Closed-loop run

If the VF Diagnostic works correctly, the hardware circuit and signal sampling will work normally, at which point you can try to run the motor in a closed-loop mode. The steps are listed below.

- 1. Start the motor by clicking the green traffic light button in the control bar (or double click Start Motor subfunction in the window of motor1, which is in the group of User Application Function Definitions). The motor will run if above step works well.
- 2. Check the motor spin direction, adjust the connection order of the motor's winding, or set negative TargetSpeed in MCEDesigner if the direction is wrong.
- 3. Set TargetSpeed to about 50% of maximum speed, start "Iu & Flx_M" trace with "Auto Repeat on Level," see Figure 10. Flx_M is good within the range of 2000~2500 (rated value is 2048), and must be steady and DC-like.

Here are some key tips for better motor performance tuning:

- If Flx_M is not steady (swing or oscillation), motor parameters, speed loop PI gain, flux estimator time constant and PLL PI bandwidth (parameters PLLKp and PLLKi) and related setup need to be checked.
- If Flx_M is very noisy, current feedback and V_{dc}-related hardware and parameters need to be checked.
- If Flx_M does not come close to 2048, "Motor Back EMF Constant (K_e)" needs to be adjusted in MCEWizard.

Figure 10 Trace waveform for I_u & Flx-M at 50% speed

- 4. Once the firmware has been programmed, and only a new parameter file has to be programmed, follow the same instructions given in Section 2.1.3. In this case, the firmware programming is no longer needed, and you can select the first option "Program Parameters."
- Note: For detailed information on controller programming, refer to AN2018-33 iMOTION[™] 2.0 Device Programming, MCEDesigner documentation and MCEWizard documentation.

2.2 Description of the functional blocks

2.2.1 Inverter stage

The inverter section is implemented with the newest generation of RC-D2 IGBT in a DPAK package. 600 V RC-D2 is the successor of the RC-D/DF IGBT. The newest version of the RC-D technology has several improvements compared to its older version: better price position, lower power losses, and better controllability over the di/dt in order to further reduce EMI compared to RC-D/DF. The device is also robust for high-voltage and high-humidity operations.

Figure 11 shows the diagram of the inverter and peripheral circuit.

Figure 11 The inverter and peripheral circuit

2.2.2 EMI filter

Figure 12 shows the diagram of the EMI filter. The stages consist of two X-capacitors, of 470 nF and 330 nF respectively, a Y-capacitor of 4.7 nF, and a common-mode inductor whose parameters are shown in Table 4. Detailed specification of the inductor can be downloaded from the board web page after logging in your myInfineon account.

Table 4	Inductance of common-mode inductor
	maactance of common mode maactor

Item	Value	Test condition	Test equipment
Inductance	50 mH	1 kHz, 0.25 V, 25 °C	TH2826 or equivalent
	45 mH	10 kHz, 0.25 V, 25 °C	
	30 mH	100 kHz, 0.25 V, 25 °C	

Figure 12 EMI filter

The conducted electromagnetic interference of this board is shown in Section 4.2. Here is a design tip to note for your reference.

REF_Fridge_D111T_RC2_SL user guide Refrigerator compressor driver reference design kit System and functional description

Note: No surge tests have been conducted on the REF_Fridge_D111T_RC2_SL board. X-capacitors (C10 and C15) on the board are X2 grade, therefore the surge test capability of these components is 2.5 kV according to the IEC60384-14. If higher surge level rating is needed, the X capacitors must be replaced with X1 grade components. Alternatively, additional surge-protection devices at the input side of the board must be added.

2.2.3 DC bus sensing and MCEWizard configuration

Figure 13 shows the detail of the DC bus sensing resistor divider stage.

With the values shown in the figure, the default DC bus-sense voltage results in a range of 0 V to 5 V on the ADC input of the microcontroller (MCU), reflecting an input voltage range from 0 V to 505 V.

Figure 13 DC bus sensing

The hardware parameters need to be configured in MCEWizard as shown in Figure 14.

dvanced Mode	•
System Motor 1	
20 - User UART Baud Rate	57600 v bps
21 - User UART Tx Delay Time	0 ms
System Options	
23 - Safty Function Tests Enable/Disable	Disable 🗸
24 - Controller Supply Voltage	5.0 V
30 - Multiple Motor Parameter Set Support	MotorID-Disabled ~
31 - Parameter Set Number	0
System DC Bus	
46 - Maximum DC Bus Voltage	400 V
47 - DC Bus Over-Voltage Level	360 V
48 - DC Bus Under-Voltage Level	30 V
49 - DC Bus Critical Over Voltage Level	380 V
50 - DC Bus Sensing High Resistor	2000 KOhms
51 - DC Bus Sensing Low Resistor	20 KOhms
	~

Figure 14 DC bus sensing configuration in MCEWizard

The V_{dc} -sensing stage features a low-pass-filter time constant that can be calculated as:

Time constant = $((R10 + R13))/(R15) * C4 = (2 M\Omega)/(20 k\Omega) * 4.7 nF = 93.1 \mu s$ Eq. 1

The value of capacitor C17 can be adjusted to improve the V_{dc} noise rejection ratio.

2.2.4 Current sensing and overcurrent protection

2.2.4.1 **Current sensing**

The current sensing on this board uses only a RC network for operational bias and low-pass filter to minimize the cost. No additional operational amplifier is needed.

Referring to Figure 15, by applying the principle of Kirchhoff's voltage law, and assuming that the the MCU analog-to-digital converter (ADC) input port has an infinite impedance, one can derive the equation below.

$$V_{ADC} = \frac{(V_{cc} - V_{shunt})}{R_1 + R_2} * R_1 + V_{shunt}$$
 Eq. 2

The equation can thus be adjusted as shown:

$$V_{ADC} = \frac{R_2 * V_{shunt}}{R_1 + R_2} + \frac{R_1 * V_{cc}}{R_1 + R_2}$$
 Eq. 3

Since the impedance of the RC network is much larger than the *R*_{shunt}, it follows that:

REF_Fridge_D111T_RC2_SL user guide Refrigerator compressor driver reference design kit

System and functional description

$$V_{shunt} = I_{shunt} * R_{shunt}$$
 Eq. 4

As a consequence, V_{ADC} can then be written as:

$$V_{ADC} = \frac{R_2}{R_1 + R_2} * R_{shunt} * I_{shunt} + \frac{R_1 * V_{cc}}{R_1 + R_2}$$
 Eq. 5

Where $\frac{R_1 * V_{CC}}{R_1 + R_2}$ is the offset, and $\frac{R_2}{R_1 + R_2} * R_{shunt}$ is the gain of the shunt current.

Current-sensing topology Figure 15

Figure 16 **Current-sensing circuit on the board**

As an example in Figure 16, this board has the following values: R1 = R7= 2 k Ω , R2 = R6 = 22.1 k Ω , V_{cc} = 5 V. By using the fomula Eq. 5, the offset is 0.415 V, and the gain is $\frac{R_2}{R_1+R_2} * R_{shunt} = 229.3 \text{ mV/A}.$

Note the following points concerning current sensing:

R8 and R20 in Figure 16 also determine ADC operational bias for current sensing, which corresponds to the • motor regeneration operation range. For the applications that do not work with regenerative braking mode,

the bias can be as low as possible to reserve enough ADC range for the drive mode, since the current in the sense resistance always flows in one direction only.

- Since the gain of the external RC circuit is less than 1, internal signal amplification is required to increase the current signal acquired with low shunt resistance values. MCE provides an inner current sampling amplifier with *1, *3, *6 and *12 gain selections, which can be configured in the MCEWizard.
- There is no common mode noise-rejection capability without an outer operational amplifier, so the GND network of the PCB needs to be designed very carefully, since any voltage difference between IMD111T's ADC ground and shunt resistor ground will be considered as an "input signal," and will deteriorate the control performance or increase audible noise.

2.2.4.2 Overcurrent protection

The overcurrent condition can be detected by IMD111T-6F040 by the internal comparator as shown in Figure 17.

Figure 17 Overcurrent protection on the board

For more details about the overcurrent protection (OCP) in the IMD111T, refer to the chapter about motor overcurrent protection in the reference material ^[6].

The internal comparator's reference level is set by the internal digital-to-analog converter (DAC) so the level can be set in the MCEWizard by "Device overcurrent trigger level setting for comparator" and "Motor1 current input to ADC offset voltage." The DAC output pin REFU needs to be connected to a capacitor to improve noise rejection (e.g. a 10 nF/16 V capacitor is used on the board).

2.2.5 NTC sensing and thermal protection

Pin 35 of the IMD111T-6F040 is connected to the ADC port dedicated to the temperature sensing. On the board, a negative temperature coefficient resistance (NTC) must be connected to the ADC port by means of the circuit shown in Figure 18. The position of the NTC resistance on the board is shown in Figure 19. The NTC is mounted at the bottom of the low-side IGBT of the motor phase 'V', which is close to the hottest IGBT on the board.

Figure 19 NTC position on the board

The parameters of the NTC resistance are: B-constant = 4050 K \pm 1%, R₂₅ = 47 k $\Omega \pm$ 1%. Based on the typical value of the thermistor resistance, the voltage of the V_{th} can be obtained in Table 5.

The firmware inside the IMD111T-6F040 integrates the over-temperature protection device, which will be triggered by the voltage V_{th} . The user must simply set the proper trigger level in the MCEWizard. More information can be found in the over-temperature protection section of the reference material^[6].

REF_Fridge_D111T_RC2_SL user guide Refrigerator compressor driver reference design kit

System and functional description

Table 5Thermistor characteristics with V = 5 V, R16=10 k Ω

Temperature (°C)	Resistance typ. (k Ω)	V _{th} (V)	V _{th} register value
15.00	75.31	4.41	3615
20.00	59.25	4.28	3504
25.00	47.00	4.12	3377
30.00	37.57	3.95	3234
35.00	30.25	3.76	3077
40.00	24.52	3.55	2909
45.00	20.01	3.33	2730
50.00	16.43	3.11	2546
55.00	13.58	2.88	2358
60.00	11.28	2.65	2171
65.00	9.42	2.43	1987
70.00	7.92	2.21	1809
75.00	6.68	2.00	1640
80.00	5.67	1.81	1481
85.00	4.83	1.63	1333
90.00	4.13	1.46	1197
95.00	3.55	1.31	1073
100.00	3.06	1.17	961
105.00	2.65	1.05	859
110.00	2.31	0.94	768
115.00	2.01	0.84	687

2.3 Frequency-signal interface

Since current refrigerator applications mainly use frequency signals to control the compressor speed, the board is designed with a frequency-signal interface. Figure 20 shows the interface circuit. The input signal is isolated from the control and power parts on the board.

Figure 20 Frequency-interface circuit

A typical square-wave, input-control signal for refrigerator applications is shown in Table 6 for reference.

Refrigerator compressor driver reference design kit

System and functional description

Table 6 Typical frequency/speed characteristics

Signal frequency fn (Hz)	Motor speed n (RPM)	
f _n < 30	Stop	
$30 \le f_n \le 40$	Minimum speed	
$40 \le f_n < 150$	30 * f _n	
$150 \le f_n < 200$	Maximum speed	
f _n ≥ 200	Stop	

System design

3 System design

This section provides the complete details of the schematics, layout and connectors. Please note that the schematics, routing and Gerber files are done in Altium[®] Designer. Users who are interested in the original project files or pdf files can visit the website <u>www.Infineon.com</u>.

3.1 Schematics

The major function blocks are introduced in Section 2.2. Users who are interested in further details can download the design files after logging in to the myInfineon account on the board's web page.

3.2 Layout

The board is designed in a single layer, with dimensions of 115 mm \times 105 mm. The board is manufactured with a copper thickness of 1 oz. (35 μ m).

Figure 21 Top view of the board

System design

Figure 22 Bottom view of the board

Here are a few design tips to note for user reference:

• Thermal performance

Collector terminal of the IGBT is directly connected to the IGBT lead frame. Maximizing the copper area connected to the IGBT connector's pin can effectively reduce the IGBT junction temperature, so the board can deliver more power.

• Ground layout

Since current sampling is non-differential and is performed without additional operational amplifier, the ground area should be carefully designed; the digital ground should have a low-impedance connection to the shunt ground to ensure a proper sampling of the current.

3.3 Bill of material

The complete bill of material is available on the download section of the Infineon homepage. A log-in to myInfineon is required to download this material.

Description S. No. **Ref Designator** Manufacturer Manufacturer P/N 1 U1 Motor controller with **Infineon Technologies** IMD111T-6F040 integrated high-voltage gate driver 2 Q7, Q8, Q9, Q10, **TRENCHSTOP RC-Series Infineon Technologies** IKD04N60RC2 Q11, Q12 for hard switching applications, VCE 600 V, IC 4 A 3 C10 CAP / FILM / 470 nF / 275 V Wurth Elektronik 890324024005 /10% / MKP (Metallized Polypropylene) / -40°C to 105°C / 12.50 mm C X 0.60 mm W 15.00 mm L X 10.00 mm T X 16.50 mm H / - / -4 C11 CAP / ELCO / 220 µF / 450 Wurth Elektronik 861141485017 V/20%/ Aluminiumelectrolytic / -25°C to 105°C / 10.00 mm Pitch X 30.00 mm Dia X 38.00 mm H / THT / -5 C15 CAP / FILM / 330 nF / 275 V Wurth Elektronik 890324025017CS / 10% / MKP (Metallized Polypropylene) / -40°C to 105°C / 12.50 mm C X 0.60 mm W 15.00 mm L X 8.50 mm T X 14.50 mm H / - / -6 C27, C28 WCAP-AT1H THT Wurth Elektronik 860241480001 Aluminum Electrolytic Capacitors, D 16 mm x L 35.5 mm, 100 µF, +/-20%, 450 VDC 7 RES / VDR / 470 V / 400 mW R22 Wurth Elektronik 820513011 / 10% / - / -40°C to 85°C / 7.50 mm C X 0.80 mm W 12.50 mm L X 6.80 mm T X 16.00 mm H / - / -

Table 7BOM of the most important/critical parts of the reference board

3.4 Connector details

Table 8X1- AC line connector

PIN	Label	Function
1	L	AC line input
2	Ν	AC neutral input

System design

Table 9X2- Motor-side connector

PIN	Label	Function
1	U	Connected to motor phase U
2	V	Connected to motor phase V
3	W	Connected to motor phase W

Table 10 X7- iMOTION[™] Link connector

PIN	Label	Function	
1	TXD1	User UART for script communication	
2	RXD1	User UART for script communication	
3&6	+3.3V	On board 3.3 V supply	
4&5	GND	Ground	
7	RXD0	MCEDesigner & firmware download	
8	TXD0	MCEDesigner & firmware download	

Table 11 X11- Earth connector

PIN	Label	Function
1	Earth	

Table 12X13- Frequency input signal connector

PIN	Label	Function
1	Frequency input	Frequency input signal, isolated by optocoupler
2	Frequency ground	Frequency input signal ground, isolated by optocoupler

4.1 Thermal characterization

Figure 23 and Figure 24 show the thermal characterizations of REF_Fridge_D111T_RC2_SL, based on single layer FR4 PCB with 1 oz. copper.

The tests reported were performed under the following conditions: T_{amb} = 25°C, V_{ac} = 220 V and with different input power until the IGBT's case temperature reaches 100°C. A 3-phase, pulse-width modulation strategy has been used with a carrier frequency of 5 kHz.

Figure 23 REF_Fridge_D111T_RC2_SL thermal characterization case temperature – input power, t_a = 25°C, PWM = 5 kHz

Table 13	Input power and current characterization ((PF = 0.56)	1

Input power (W)	100	200	250
Input current (A)	0.8	1.6	1.99

Figure 24 REF_Fridge_D111T_RC2_SL thermal characterization, case temperature - motor phase current, t_a = 25°C, PWM = 5 kHz

4.2 Electromagnetic interference (EMI) conducted

This section shows the conducted EMI of REF_Fridge_D111T_RC2_SL. Test limits follow the EN 55032 – conducted disturbance at the mains ports of class B ITE (information technology equipment).

Table 14 Limits for conducted distu	rbance at the mains ports of class B ITE
-------------------------------------	--

Frequency range (MHz)	Limits (dB(µV))	Limits (dB(μV))		
	Quasi-peak	Average		
0.15 to 0.5	66 to 56	56 to 46		
0.5 to 5	56	46		
5 to 30	60	50		

Note: 1. *The lower limit shall apply at the transition frequencies*

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

A fan with 180 W rated power has been used as load motor for this test. The conducted EMI test was conducted under the four different combinations below.

- 1. AC L line, 100 W (light load)
- 2. AC L line, 180 W (heavy load)
- 3. AC N line, 100 W (light load)
- 4. AC N line, 180 W (heavy load)

The test results are listed in Figure 25 to Figure 28, and the final mark tables in Table 15 to Table 22, respectively. The user may notice that all the final measured values have a margin of more than 5 dB to the limits provided by the EN 55032 standard.

Table 15	Final mark table of	f quasi-peak v	alue in Figure 25

No.	Frequency (MHz)	Read Value (dBµV)	Factor (dBµV)	Measured Value (dBμV)	Limit (dBµV)	OverLimit (dB)	Detector	Measure Time (ms)
1	18.813900	38.70	10.30	49.00	60.00	-11.00	QP	1000
2	18.845550	39.08	10.30	49.38	60.00	-10.62	QP	1000
3	19.032170	39.50	10.25	49.75	60.00	-10.25	QP	1000
4	20.292600	40.42	10.23	50.66	60.00	-9.34	QP	1000
5	20.422830	40.47	10.24	50.71	60.00	-9.29	QP	1000
6	20.482200	40.20	10.25	50.45	60.00	-9.55	QP	1000

Table 16	Final mark table of aver	age value in Figure 25
----------	--------------------------	------------------------

No.	Frequency (MHz)	Read Value (dBµV)	Factor (dBµV)	Measured Value (dBµV)	Limit (dBµV)	OverLimit (dB)	Detector	Measure Time (ms)
1	19.138100	33.90	10.23	44.13	50.00	-5.87	AV	1000
2	19.690630	34.28	10.23	44.51	50.00	-5.49	AV	1000
3	19.794400	34.43	10.23	44.66	50.00	-5.34	AV	1000
4	20.127760	34.65	10.23	44.88	50.00	-5.12	AV	1000
5	20.327130	34.59	10.23	44.83	50.00	-5.17	AV	1000
6	20.351350	34.59	10.23	44.83	50.00	-5.17	AV	1000

Figure 26 AC L line, 180 W result chart

Table 17	Final mark table of c	quasi-peak value	in Figure 26
			0

No.	Frequency (MHz)	Read Value (dBµV)	Factor (dBµV)	Measured Value (dBµV)	Limit (dBµV)	OverLimit (dB)	Detector	Measure Time (ms)
1	19.043860	37.78	10.24	48.03	60.00	-11.97	QP	1000
2	19.225150	37.34	10.22	47.56	60.00	-12.44	QP	1000
3	20.090370	38.83	10.23	49.06	60.00	-10.94	QP	1000
4	20.141420	38.72	10.23	48.95	60.00	-11.05	QP	1000
5	20.294830	38.92	10.23	49.15	60.00	-10.85	QP	1000
6	20.449000	38.67	10.24	48.91	60.00	-11.09	QP	1000

Table 18Final mark table of average value in Figure 26

No.	Frequency (MHz)	Read Value (dBµV)	Factor (dBµV)	Measured Value (dBμV)	Limit (dBµV)	OverLimit (dB)	Detector	Measure Time (ms)
1	19.000500	31.59	10.26	41.85	50.00	-8.15	AV	1000
2	19.118290	31.73	10.23	41.96	50.00	-8.04	AV	1000
3	19.239310	31.67	10.22	41.90	50.00	-8.10	AV	1000
4	19.872120	31.28	10.23	41.51	50.00	-8.49	AV	1000
5	20.054190	31.71	10.23	41.94	50.00	-8.06	AV	1000
6	20.283510	31.97	10.23	42.20	50.00	-7.80	AV	1000

Figure 27 AC N line, 100 W result chart

Table 19	Final mark table of c	uasi-peak	value in Figure 27
		laasi bean	Value III I Iguie Zi

No.	Frequency (MHz)	Read Value (dBμV)	Factor (dBµV)	Measured Value (dBμV)	Limit (dBµV)	OverLimit (dB)	Detector	Measure Time (ms)
1	18.975650	39.28	10.27	49.55	60.00	-10.45	QP	1000
2	19.969040	39.37	10.23	49.60	60.00	-10.40	QP	1000
3	20.200190	39.93	10.23	50.16	60.00	-9.84	QP	1000
4	20.395600	39.83	10.24	50.07	60.00	-9.93	QP	1000
5	20.418530	39.67	10.24	49.91	60.00	-10.09	QP	1000
6	20.444660	39.71	10.24	49.95	60.00	-10.05	QP	1000

Table 20Final mark table of average value in Figure 27

No.	Frequency (MHz)	Read Value (dBµV)	Factor (dBµV)	Measured Value (dBμV)	Limit (dBµV)	OverLimit (dB)	Detector	Measure Time (ms)
1	19.513210	33.58	10.23	43.81	50.00	-6.19	AV	1000
2	19.631230	33.62	10.23	43.85	50.00	-6.15	AV	1000
3	19.655210	33.73	10.23	43.95	50.00	-6.05	AV	1000
4	19.889460	33.96	10.23	44.19	50.00	-5.81	AV	1000
5	20.091340	34.15	10.23	44.38	50.00	-5.62	AV	1000
6	20.238820	34.06	10.23	44.29	50.00	-5.71	AV	1000

Figure 28 AC N line, 180 W result chart

Table 21	Final mark table of c	quasi-peak value	in Figure 28
			0

No.	Frequency (MHz)	Read Value (dBµV)	Factor (dBµV)	Measured Value (dBµV)	Limit (dBµV)	OverLimit (dB)	Detector	Measure Time (ms)
1	18.957720	37.63	10.28	47.90	60.00	-12.10	QP	1000
2	19.008700	37.38	10.26	47.64	60.00	-12.36	QP	1000
3	19.531730	36.77	10.23	46.99	60.00	-13.01	QP	1000
4	20.234720	38.21	10.23	48.45	60.00	-11.55	QP	1000
5	20.235070	38.30	10.23	48.53	60.00	-11.47	QP	1000
6	20.264600	38.29	10.23	48.52	60.00	-11.48	QP	1000

Table 22

Final mark table of average value in Figure 28

No.	Frequency (MHz)	Read Value (dBµV)	Factor (dBµV)	Measured Value (dBμV)	Limit (dBµV)	OverLimit (dB)	Detector	Measure Time (ms)
1	18.966560	31.32	10.27	41.60	50.00	-8.40	AV	1000
2	19.000130	31.33	10.26	41.59	50.00	-8.41	AV	1000
3	19.060220	31.27	10.24	41.51	50.00	-8.49	AV	1000
4	19.520510	30.98	10.23	41.20	50.00	-8.80	AV	1000
5	19.968470	31.05	10.23	41.28	50.00	-8.72	AV	1000
6	20.105740	31.32	10.23	41.55	50.00	-8.45	AV	1000

4.3 Electrical fast transient (EFT) test

EFT performance of REF_Fridge_D111T_RC2_SL has been verified based on test conditions below:

- Voltage peak: 4 kV
- Burst frequency: 5 kHz and 100 kHz
- Coupling path: L, N, PE, L+N, L+PE, N+PE, L+N+PE
- Duration: 120 s each

The board drives the motor normally during the test period, without any system crash/reset/damage.

4.4 IGBT dV/dt test

This section shows the waveforms of IGBT collector-emitter voltage (V_{CE}) during turn-on and turn-off switching. The oscilloscope probe is connected as shown in Figure 29. The turn-on and turn-off gate resistances are $R_{g(on)} = 510 \Omega$ and $R_{g(off)} = 47 \Omega$, respectively. The dV/dt is calculated considering the VCE variation from 10% to 90% of the bus voltage.

Figure 29 Drain-to-source voltage test - dV/dt control

As shown in Figure 30 and Figure 31, when the low-side IGBT turns on, the $V_{CE} dV/dt$ is equal to 5.24 V/ns. When the low-side IGBT turns off, the dV/dt is 2.8 V/ns. Users may further adapt the R_g value to control IGBT's dV/dt if needed.

Figure 30 IGBT turn-on waveform

Figure 31 IGBT turn-off waveform

5 Reference and appendices

5.1 Abbreviations and definitions

Table 23Abbreviations

Abbreviation	Meaning
RC-D2	Reverse-conducting drive 2
CE	Conformité Européenne
EMI	Electromagnetic interference
UL	Underwriters Laboratories

5.2 References

- [1] Infineon Technologies AG. Datasheet of IKD04N60RC2 (2021) V1.0 www.infineon.com
- [2] Infineon Technologies AG. Datasheet of IMD111T-6F040 (2020) V1.0 www.infineon.com
- [3] Infineon Technologies AG. Datasheet of IRLM2030TRPbF (2009) www.infineon.com
- [4] Infineon Technologies AG. MCEWizard_V2.3.0.0 User Guide (2019) www.infineon.com
- [5] Infineon Technologies AG. MCEDesigner_V2.3.0.0 Application Guide (2019) www.infineon.com
- [6] Infineon Technologies AG. iMOTION[™] Motion Control Engine Software Reference Manual (2020) V1.3 <u>www.infineon.com</u>

5.3 Additional information

In order to initiate testing, customers are advised to order the iMOTION[™] Link; detailed information is listed in Table 24.

The Infineon components on the board are listed in Table 24 as well. The customers can visit the corresponding webpage for more information.

Table 24Additional information on tools and Infineon components

Base part number	Package	Standard pack		Orderable part number
		Form Quantity		
<u>iMOTION™ Link</u>		Container	1	IMOTIONLINK
IMD111T-6F040	PG-LQFP-40	Tape and reel	1500	IMD111T6F040XUMA1
<u>IKD04N60RC2</u>	PG-T0252-3	Tape and reel	2500	IKD04N60RC2ATMA1

Revision history

Document version	Date of release	Description of changes
1.0	2021/07/29	Initial version
1.1	2022/02/10	Updated iMOTION [™] Driver

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-02-10

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference UG-2021-31 For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

EVB-EP5348UI DA9063-EVAL BQ24155EVM BQ25010EVM REG710EVM-5 TPS54980EVM-022 TPS65010EVM-230 BQ24120EVM-001 BQ24212EVM-678 BQ3050EVM-001 ISL9520EVAL1Z UCC3809EVM LM3691TL-1.2EV/NOPB SOT23-3EV-VREG SOT89-3EV-VREG TPS2458EVM TPS54229EEVM-056 TPS54329EEVM-056 MAX8556EVKIT MAX20012EVKIT# MAX15005AEVKIT+ S6SBP203A8FVA1001 TPS652510EVM STEVAL-ISA047V1 ISL8502AEVAL1Z ISL8009AEVAL1Z TPS76901EVM-127 FRDM-HB2001-EVM BM6208FS-EVK-001 LM5115EVAL LP5900TL-2.5EV DRI0043 7E.12.8.230.0002 KITPF8100FRDMEVM NCP10671B05GEVB MAX20073EVKIT# EVB-EN6337QA AP3125AEV1 NIV6350MT2GEVB XMCA1 RD33771-48VEVM EVKT-MPM3695-10-A DEMO200W12VDCLLC SAMPLEBOXILD8150TOBO1 MAX18066EVKIT# AP61100Z6-EVM AP62300WU-EVM KIT8020-CRD-8FF1217P-1 KITPF8121FRDMEVM EV2174C-G-00A