## SIEMENS

Programmable
Single-/Dual-/Triple- Tone Gong
SAE 800

Bipolar IC

## Features

- Supply voltage range 2.8 V to 18 V
- Few external components (no electrolytic capacitor)
- 1 tone, 2 tones, 3 tones programmable
- Loudness control
- Typical standby current $1 \mu \mathrm{~A}$
- Constant current output stage (no oscillation)
- High-efficiency power stage
- Short-circuit protection

- Thermal shutdown


| Type | Ordering Code | Package |
| :--- | :--- | :--- |
| $\boldsymbol{\nabla}$ SAE 800 | Q67000-A8339 | PG-DIP-8-4 |
| $\boldsymbol{\nabla}$ SAE 800 G | Q67000-A8340 | PG-DSO-8-1 (SMD) |

New type

## Functional Description

The SAE 800 is a single-tone, dual-tone or triple-tone gong IC designed for a very wide supply voltage range. If the oscillator is set to $f_{0}=13.2 \mathrm{kHz}$ for example, the IC will issue in triple-tonemode the minor and major third $e^{2}-C$ sharp - a, corresponding to $660 \mathrm{~Hz}-550 \mathrm{~Hz}-440 \mathrm{~Hz}$, in dual-tone-mode the minor third $\mathrm{e}^{2}-\mathrm{C}$ sharp, and in single-tone-mode the tone $\mathrm{e}^{2}$ (derived from the fundamental frequency $f_{0} ; f_{1}=f_{0} / 20, f_{2}=f_{0} / 24, f_{3}=f_{0} / 30$ ).
When it is not triggered, the IC is in a standby state and only draws a few $\mu \mathrm{A}$. It comes in a compact P-DIP-8-1 or P-DSO-8-1 (SMD) package and only requires a few external components.

SAE 800


SAE 800 G


## Pin Configuration

(top view)
Pin Definitions and Functions

| Pin | Symbol | Function |
| :--- | :--- | :--- |
| 1 | GND | Ground |
| 2 | Q | Output |
| 3 | $V_{\text {S }}$ | Supply Voltage |
| 4 | L | Loudness Control |
| 5 | $R_{\text {OSC }}$ | Oscillator Resistor |
| 6 | $C_{\text {OsC }}$ | Oscillator Capacitor |
| 7 | E2 | Trigger 2 (dual tone) |
| 8 | E1 | Trigger 1 (single tone) |

## Functional Description (cont'd)

An RC combination is needed to generate the fundamental frequency (pin $R_{\mathrm{OSC}}, C_{\mathrm{OSc}}$ ). The volume can be adjusted with another resistor (pin L). The loudspeaker must be connected directly between the output Q and the power supply $V_{\mathrm{S}}$. The current-sink principle combined with an integrated thermal shutdown (with hysteresis) makes the IC overload-protected and shortcircuit-protected.

There are two trigger pins (E1, E2) for setting single-tone, dual-tone or triple-tone mode.


## Block Diagram

## Circuit Description

## Trigger

Positive pulses on inputs E1 and/or E2 trigger the IC. The hold feedback in the logic has a delay of several milliseconds. After this delay has elapsed, the tone sequence is started. This prevents parasitic spikes from producing any effect on the trigger pins.

The following table shows the trigger options:

| E1 | E2 | Mode | Issued Sequence |
| :--- | :--- | :--- | :--- |
| Triggered | Triggered | Triple-tone | Minor and major third |
| Grounded/open | Triggered | Dual-tone | Minor third |
| Triggered | Grounded/open | Single-tone | 1st tone of minor third |

## Oscillator

This is a precision triangle oscillator with an external time constant ( $\mathrm{R} \times \mathrm{C}$ ). Capacitor $C_{\mathrm{C}}$ on pin $C_{\text {osc }}$ is charged by constant current to 1 V and then discharged to 0.5 V . The constant current is obtained on pin $R_{\mathrm{OSc}}$ with an external resistor $R_{\mathrm{R}}$ to ground.
When the voltage on $C_{\text {Osc }}$ is building up, the logic is reset at 350 mV . This always ensures that a complete tone sequence is issued. If the oscillator pin is short-circuited to GND during operation, the sequence is repeated.


The following applies: $\Delta V_{\mathrm{C}} \times C_{\mathrm{C}}=I_{\mathrm{C}} \times \mathrm{T} / 2$ with $I_{\mathrm{C}}=V_{\mathrm{R}} / 2 R_{\mathrm{R}}=1.2 \mathrm{~V} / 2 R_{\mathrm{R}}$ $f_{0}=5 / 8 \times 1 /\left(R_{\mathrm{R}} \times C_{\mathrm{C}}\right)$

## Voltages on Pin $C_{\text {osc }}$

## Logic

The logic unit contains the complete sequence control. The oscillator produces the power-on reset and the clock frequency. Single-tone, dual-tone or triple-tone operation is programmed on inputs E1 and E2. The 4-bit digital/analog converters are driven in parallel. In the event of oscillator disturbance, and after the sequence, the dominant stop output is set. By applying current to pin L, the sequence can be shortened by a factor of 30 for test purposes.
The following figure shows the envelope of the triple-tone sequence:


## Envelope of the Triple-Tone Sequence

## Digital / Analog Converter, Loudness and Junction Control

The DAC converts the 4-bit words from the logic into the appropriate staircase currents with the particular tone frequency. The sum current $I_{\mathrm{I}}$ drives the following current amplifier. The loudness generator produces the DAC reference current $I_{\mathrm{L}}$ for all three tones. This requires connecting an external resistor to ground. The chip temperature is monitored by the junction control. At temperatures of more then approx. $170^{\circ} \mathrm{C}$ the stop input will switch the output current $I_{\mathrm{I}}$ to zero. The output current is enabled again once the chip has cooled down to approx. $150^{\circ} \mathrm{C}$.

## Current Amplifier

The current amplifier with a gain of 1600 boosts the current $I_{\mathrm{I}}$ from approx. $470 \mu \mathrm{~A}$ maximum to approx. 750 mA maximum. The output stage consists of an NPN transistor with its emitter on power GND and collector on pin Q.
The current control insures that the output stage only conducts defined currents. In conjunction with the integrated thermal shutdown, this makes the configuration shortcircuit-protected within wide limits. Because of the absence of feedback the circuit is also extremely stable and therefore uncritical in applications. Resistor $R_{\mathrm{L}}$ on pin L sets the output voltage swing. This assumes that the resistive component of the loudspeaker impedance $R_{\mathrm{Q}}$ responds similarly as the resistance $R_{\mathrm{L}}$.

The output amplitude of the current $I_{\mathrm{I}}$ reaches the maximum $I_{\mathrm{Imax}} \cong 3 \times V_{\mathrm{L}} / R_{\mathrm{L}}$ at a time $t$ of 2.33 s (only 3 tone mode), so $R_{\mathrm{L}}$ has to be scaled for this point.
The following applies:
$I_{\mathrm{Q}}=I_{\mathrm{Imax}} \times \mathrm{B}=\left(V_{\mathrm{S}}-V_{\text {sat }}\right) / R_{\mathrm{Q}} \approx 0.8 V_{\mathrm{S}} / R_{\mathrm{Q}}$
$3 \times \mathrm{B} \times\left(V_{\mathrm{L}} / R_{\mathrm{L}}\right) \approx 0.8 V_{\mathrm{S}} / R_{\mathrm{Q}}$
the result is:
$R_{\mathrm{L}}=R_{\mathrm{Q}} \times 3 \times \mathrm{B} \times\left(V_{\mathrm{L}} / 0.8 V_{\mathrm{S}}\right)$
with: $B=1600$
$R_{\mathrm{L}}=R_{\mathrm{Q}} \times \mathrm{K} \times\left(V_{\mathrm{L}} / 0.8 V_{\mathrm{S}}\right)$
with: $K=4800$

## Application Hints and Application Circuit

1) Loudness Resistor (max. Load Current of 3-Tone Signal with Ensured Ratio of Amplitudes)
$0.8 V_{\mathrm{S}} / R_{\mathrm{Q}} \approx\left(V_{\mathrm{L}} / R_{\mathrm{L}}\right) \times \mathrm{K}$
$R_{\mathrm{L}}=\left(V_{\mathrm{L}} / 0.8 V_{\mathrm{S}}\right) \times R_{\mathrm{Q}} \times \mathrm{K} ; \mathrm{K}=4800$
Example: $R_{\mathrm{Q}}=8 \Omega ; V_{\mathrm{S}}=5 \mathrm{~V} ; V_{\mathrm{L}}=1.2 \mathrm{~V}$
$R_{\mathrm{L}}=(1.2 / 4) \times 8 \Omega \times 4800 \approx 12 \mathrm{k} \Omega$
2) Oscillator Elements $\boldsymbol{R}_{\mathrm{R}}, \boldsymbol{C}_{\mathrm{C}}$
$f=5 / 8 \times 1 /\left(R_{\mathrm{R}} \times C_{\mathrm{C}}\right)$
Example: $f=13.2 \mathrm{kHz} ; C_{\mathrm{C}}=4.7 \mathrm{nF}$
$R_{\mathrm{R}}=5 /(8 \times 13.2 \times 4.7) \times 10^{6} \Omega \approx 10 \mathrm{k} \Omega$

The following is a typical application circuit


## Application Circuit

## Absolute Maximum Ratings

| Parameter | Symbol | Limit Values |  | Unit |
| :--- | :--- | :--- | :--- | :--- |
|  |  | min. | max. |  |
| Supply voltage | $V_{\mathrm{S}}$ | -0.3 | 24 | V |
| Input voltage at E1, E2 | $V_{\mathrm{E} 1, \mathrm{E} 2}$ | -5 | 24 | V |
| Current at output Q | $I_{\mathrm{Q}}$ | -50 | 750 | mA |
| Current at input pins E1, E2 | $I_{\mathrm{E} 1, \mathrm{E} 2}$ | -2 | 3 | mA |
| Current at pin $R_{\mathrm{OSC}}$ | $I_{\mathrm{R}}$ | -300 | 200 | $\mu \mathrm{~A}$ |
| Current at pin L | $I_{\mathrm{L}}$ | -300 | 200 | $\mu \mathrm{~A}$ |
| Current at pin $C_{\text {OSC }}$ | $I_{\mathrm{C}}$ | -200 | 200 | $\mu \mathrm{~A}$ |
| Junction temperature | $T_{\mathrm{j}}$ | -50 | 150 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | $T_{\mathrm{stg}}$ | -50 | 150 | ${ }^{\circ} \mathrm{C}$ |

## Operating Range

| Supply voltage | $V_{\mathrm{S}}$ | 2.8 | 18 | V |
| :--- | :--- | :--- | :--- | :--- |
| Junction temperature | $T_{\mathrm{j}}$ | -25 | 125 | ${ }^{\circ} \mathrm{C}$ |
| Oscillator frequency at $C_{\mathrm{OSC}}$ | $f_{\mathrm{C}}$ |  | 100 | kHz |
| Current at pin $R_{\mathrm{OSC}}$ | $I_{\mathrm{R}}$ | -200 | -10 | $\mu \mathrm{~A}$ |
| Current for test mode at pin L | $I_{\mathrm{R}}$ | 90 | 110 | $\mu \mathrm{~A}$ |
| Current at pin L | $I_{\mathrm{L}}$ | -200 | -10 | $\mu \mathrm{~A}$ |
| Input voltage at E1, E2 | $V_{\mathrm{E} 1, \mathrm{E} 2}$ | -4 | 18 | V |
| Thermal resistance |  |  |  |  |
| junction-air (PG-DIP-8-4) <br> junction-air (PG-DSO-8-1) | $R_{\mathrm{th} \text { JA }}$ |  | 100 | $\mathrm{~K} / \mathrm{W}$ |

## Characteristics

$T_{\mathrm{j}}=-25$ to $125^{\circ} \mathrm{C} ; V_{\mathrm{S}}=2.8$ to 18 V

| Parameter | Symbol | Limit Values |  | Unit | Test |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | min. | typ. | max. |  | Condition |

## Supply Section

| Standby current | $I_{\mathrm{St}}$ |  | 1 | 10 | $\mu \mathrm{~A}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Quiescent current; pin L open | $I_{\mathrm{Qu}}$ |  | 5 | 10 | mA |  |

## Output Section

| Peak output power (tone 3) |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $V_{\mathrm{S}}=2.8 \mathrm{~V} ; R_{\mathrm{Q}}=4 \Omega ; R_{\mathrm{L}}=8.2 \mathrm{k} \Omega$ | $P_{\mathrm{Q}}$ | 250 | 330 |  | mW |  |
| $V_{\mathrm{S}}=2.8 \mathrm{~V} ; R_{\mathrm{Q}}=8 \Omega ; R_{\mathrm{L}}=18 \mathrm{k} \Omega$ | $P_{\mathrm{Q}}$ | 125 | 165 |  | mW |  |
| $V_{\mathrm{S}}=5.0 \mathrm{~V} ; R_{\mathrm{Q}}=8 \Omega ; R_{\mathrm{L}}=10 \mathrm{k} \Omega$ | $P_{\mathrm{Q}}$ | 450 | 600 |  | mW | A |
| $V_{\mathrm{S}}=5.0 \mathrm{~V} ; R_{\mathrm{Q}}=16 \Omega ; R_{\mathrm{L}}=18 \mathrm{k} \Omega$ | $P_{\mathrm{Q}}$ | 225 | 300 |  | mW |  |
| $V_{\mathrm{S}}=12 \mathrm{~V} ; R_{\mathrm{Q}}=50 \Omega ; R_{\mathrm{L}}=33 \mathrm{k} \Omega$ | $P_{\mathrm{Q}}$ | 450 | 600 |  | mW |  |
| Output level differences: |  |  |  |  |  |  |
| tone 1 to 3 | $a_{13}$ | -1 |  | 1 | dB | $\mathrm{~A}^{1)}$ |
| tone 2 to 3 | $a_{23}$ | -1 |  | 1 | dB | $\mathrm{~A}^{2)}$ |

## Biasing Section

| Voltage at pin $R_{\mathrm{OSc}} ; R_{\mathrm{R}}=10 \mathrm{k} \Omega$ | $V_{\mathrm{R}}$ |  | 1.2 |  | V |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Voltage at pin $\mathrm{L} ; R_{\mathrm{L}}=10 \mathrm{k} \Omega$ | $V_{\mathrm{L}}$ |  | 1.2 |  | V |  |

## Oscillator Section

Amplitude
Frequency $R_{\mathrm{R}}=10 \mathrm{k} \Omega$;
$C_{\text {C }}=4.7 \mathrm{nF}$
Oscill. drift vs. temperature
Oscill. drift vs. supply voltage

| $\Delta V_{\mathrm{C}}$ |  | 0.5 |  | V |
| :--- | :--- | :--- | :--- | :--- |
| $f_{0}$ |  | 13.2 |  | kHz |
|  |  |  |  |  |
| $D_{\mathrm{T}}$ | -3 |  | +3 | $10^{-4} / \mathrm{K}$ |
| $D_{\mathrm{V}}$ |  | 1 |  | $10^{-3} / \mathrm{K}$ |

## Input Section

Triggering voltage at E1, E2
Triggering current at E1, E2
Noise voltage immunity at E1, E2
Triggering delay at $f_{0}=13.2 \mathrm{kHz}$

| $V_{\mathrm{E} 1, \mathrm{E} 2}$ | 1.6 |
| :--- | :--- |
| $I_{\mathrm{E}, \mathrm{E} 2}$ | 100 |
| $V_{\mathrm{E} 1, \mathrm{E} 2}$ | 2 |
| $t_{\mathrm{dT}}$ | 2 |


|  | V |
| :--- | :--- |
|  | $\mu \mathrm{A}$ |
| 0.3 | V |
| 10 | ms |

1) $a_{13}=20 \times \log (\mathrm{M} 1 /(0.67 \times \mathrm{M} 3))$
2) $a_{23}=20 \times \log (\mathrm{M} 2 /(0.89 \times \mathrm{M} 3))$

Output Peak Voltage $V_{Q}$ versus Loudness-Current $I_{L}$


Power Dissipation $P_{\mathrm{v}}$ of Output Stage versus Loudness-Current $I_{\mathrm{L}}$


Max. Output Power $P_{Q}$ versus
Loudness-Current $I_{\mathrm{L}}$


Peak Current $I_{Q}$ versus Loudness-Current $I_{\mathrm{L}}$

${ }^{*}$ ) Note that $I_{\mathrm{Q}}=f\left(I_{\mathrm{L}}\right)$ varies between 0 and $\mathrm{K} \cdot I_{\mathrm{L}}$ during tone sequence. Thereby the maximum of the power dissipation during the tone sequence is the maximum of $\mathrm{P}_{\mathrm{v}}$ (in diagram) between $I_{\mathrm{L}}=0$ and chosen $I_{\mathrm{L}}=V_{\mathrm{L}} / R_{\mathrm{L}}$.

Output Peak Voltage $V_{Q}$ versus Loudness-Current $I_{\mathrm{L}}$


Power Dissipation $P_{\mathrm{v}}$ of Output Stage versus Loudness-Current $I_{\mathrm{L}}$


Max. Output Power $P_{\mathrm{Q}}$ versus
Loudness-Current $I_{\mathrm{L}}$


Peak Current $I_{\mathrm{Q}}$ versus Loudness-Current $I_{\mathrm{L}}$

${ }^{*}$ ) Note that $I_{\mathrm{Q}}=f\left(I_{\mathrm{L}}\right)$ varies between 0 and $\mathrm{K} \cdot I_{\mathrm{L}}$ during tone sequence. Thereby the maximum of the power dissipation during the tone sequence is the maximum of $\mathrm{P}_{\mathrm{v}}$ (in diagram) between $I_{\mathrm{L}}=0$ and chosen $I_{\mathrm{L}}=V_{\mathrm{L}} / R_{\mathrm{L}}$.


Circuit for SAE 800 Application in Home Chime Installation Utilizing AC and DC Triggering for 1, 2 or 3 Tone Chime; Adjustable Volume

PCB layout information: Because of the peak currents at $V_{\mathrm{S}}, \mathrm{Q}$ and GND the lines should be designed in a flatspread way or as star pattern.
$\qquad$


Circuit for SAE 800 Application in Home Chime Installation for Operation without Battery

## Package Outlines

Plastic-Package, PG-DIP-8-4
(Plastic Dual In-Line Package)


Index Marking

1) Does not include plastic or metal protrusion of 0.25 max. per side

Plastic-Package, PG-DSO-8-1 (SMD)
(Plastic Dual Small Outline)


1) Does not Include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Audio Amplifiers category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T
TDA7563AH SSM2529ACBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 SSM2375CBZ-REEL7
IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T MAX9724AEBC+TG45
LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7 MP1720DH-12-LF-P SABRE9601K
THAT1646W16-U PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR BD37512FS-E2 BD37543FS-E2 BD3814FV-E2
TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 AS3410-EQFP-500 FDA4100LV TS4994EIJT NCP2820FCT1G
NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1 OPA1612AQDRQ1 TDA7492 SSM2519ACBZ-R7 ZXCD1210JB16TA
TPA3255DDVR

