Fast IGBT in NPT-technology

- 75% lower $E_{\text {off }}$ compared to previous generation combined with low conduction losses
- Short circuit withstand time - $10 \mu \mathrm{~s}$
- Designed for:

- Motor controls
- Inverter
- NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
- Qualified according to JEDEC ${ }^{2}$ for target applications
- Pb-free lead plating; RoHS compliant
- Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

Type	$V_{\text {CE }}$	I_{C}	$V_{\mathrm{CE}\left(\text { sat) } 150^{\circ} \mathrm{C}\right.}$	$\boldsymbol{T}_{\mathrm{j}}$	Marking	Package
SGB02N60	600 V	2 A	2.2 V	$150^{\circ} \mathrm{C}$	G02N60	PG-TO-263-3-2

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CE }}$	600	V
DC collector current $\begin{aligned} & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$	I_{C}	$\begin{aligned} & 6.0 \\ & 2.9 \end{aligned}$	A
Pulsed collector current, t_{p} limited by $T_{\text {jmax }}$	$I_{\text {Cpuls }}$	12	
Turn off safe operating area $V_{\mathrm{CE}} \leq 600 \mathrm{~V}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$	-	12	
Gate-emitter voltage	$V_{\text {GE }}$	± 20	V
Avalanche energy, single pulse $\begin{aligned} & I_{\mathrm{C}}=2 \mathrm{~A}, V_{\mathrm{CC}}=50 \mathrm{~V}, R_{\mathrm{GE}}=25 \Omega, \\ & \text { start at } T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	$E_{\text {AS }}$	13	mJ
Short circuit withstand time ${ }^{1)}$ $V_{\mathrm{GE}}=15 \mathrm{~V}, V_{\mathrm{CC}} \leq 600 \mathrm{~V}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$	$t_{\text {Sc }}$	10	$\mu \mathrm{s}$
Power dissipation $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	30	W
Operating junction and storage temperature	$T_{\mathrm{j}}, T_{\text {stg }}$	$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
Soldering temperature (reflow soldering, MSL1)		245	

[^0]Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance, junction - case	$R_{\text {thJc }}$		4.2	K/W
Thermal resistance, junction - ambient ${ }^{1)}$	$R_{\text {thJA }}$		40	

Electrical Characteristic, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value			Unit
			Typ.	max.		

Static Characteristic

Collector-emitter breakdown voltage	$V_{\text {(BR)CES }}$	$V_{\mathrm{GE}}=0 \mathrm{~V}, I_{\mathrm{C}}=500 \mu \mathrm{~A}$	600	-	-	V
Collector-emitter saturation voltage	$V_{\text {CE(sat) }}$	$\begin{aligned} & V_{G E}=15 \mathrm{~V}, I_{\mathrm{C}}=2 \mathrm{~A} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	1.7	$\begin{aligned} & 1.9 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.7 \end{aligned}$	
Gate-emitter threshold voltage	$V_{\text {GE(th) }}$	$I_{C}=150 \mu \mathrm{~A}, V_{\mathrm{CE}}=V_{\mathrm{GE}}$	3	4	5	
Zero gate voltage collector current	$I_{\text {CES }}$	$\begin{aligned} & V_{\mathrm{CE}}=600 \mathrm{~V}, V_{\mathrm{GE}}=0 \mathrm{~V} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$		-	$\begin{gathered} 20 \\ 250 \end{gathered}$	$\mu \mathrm{A}$
Gate-emitter leakage current	$I_{\text {GES }}$	$V_{\text {CE }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	-	100	nA
Transconductance	$g_{\text {fs }}$	$V_{C E}=20 \mathrm{~V}, I_{C}=2 \mathrm{~A}$	-	1.6	-	S

Dynamic Characteristic

Input capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{CE}}=25 \mathrm{~V}, \\ & V_{\mathrm{GE}}=0 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	142	170	pF
Output capacitance	$C_{\text {oss }}$		-	18	22	
Reverse transfer capacitance	$C_{\text {rss }}$		-	10	12	
Gate charge	$Q_{\text {Gate }}$	$\begin{aligned} & V_{\mathrm{CC}}=480 \mathrm{~V}, I_{\mathrm{C}}=2 \mathrm{~A} \\ & V_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	-	14	18	nC
Internal emitter inductance measured 5 mm (0.197 in.) from case	L_{E}		-	7	-	nH
Short circuit collector current ${ }^{2)}$	$I_{\text {C(SC) }}$	$\begin{aligned} & V_{\mathrm{GE}}=15 \mathrm{~V}, t_{\mathrm{SC}} \leq 10 \mu \mathrm{~s} \\ & V_{\mathrm{CC}} \leq 600 \mathrm{~V} \\ & T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C} \end{aligned}$	-	20	-	A

[^1]Switching Characteristic, Inductive Load, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	

IGBT Characteristic

Turn-on delay time	$t_{\mathrm{d} \text { (on) }}$	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CC}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, \\ & R_{\mathrm{G}}=118 \Omega, \\ & L_{\sigma^{11}}=180 \mathrm{nH}, \\ & C_{\sigma}{ }^{1 \prime}=180 \mathrm{pF} . \end{aligned}$ Energy losses include "tail" and diode reverse recovery.	-	20	24	ns
Rise time	t_{r}		-	13	16	
Turn-off delay time	$t_{\mathrm{d} \text { (off) }}$		-	259	311	
Fall time	t_{f}		-	52	62	
Turn-on energy	$E_{\text {on }}$		-	0.036	0.041	mJ
Turn-off energy	$E_{\text {off }}$		-	0.028	0.036	
Total switching energy	$E_{\text {ts }}$		-	0.064	0.078	

Switching Characteristic, Inductive Load, at $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
IGBT Characteristic						
Turn-on delay time	$t_{\text {d }(\text { on) }}$	$\begin{aligned} & T_{\mathrm{j}}=150^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CC}}=400 \mathrm{~V}, I_{\mathrm{C}}=2 \mathrm{~A}, \\ & V_{\mathrm{GE}}=0 / 15 \mathrm{~V}, \\ & R_{\mathrm{G}}=118 \Omega, \\ & L_{\sigma^{1}}{ }^{1 \prime}=180 \mathrm{nH}, \\ & \underline{C}_{\sigma}{ }^{1}=180 \mathrm{pF} \end{aligned}$ Energy losses include "tail" and diode reverse recovery.	-	20	24	ns
Rise time	t_{r}		-	14	17	
Turn-off delay time	$t_{\text {d (off) }}$		-	287	344	
Fall time	$t_{\text {f }}$		-	67	80	
Turn-on energy	$E_{\text {on }}$		-	0.054	0.062	mJ
Turn-off energy	$E_{\text {off }}$		-	0.043	0.056	
Total switching energy	$E_{\text {ts }}$		-	0.097	0.118	

${ }^{1)}$ Leakage inductance L_{σ} and Stray capacity C_{σ} due to dynamic test circuit in Figure E.

Figure 1. Collector current as a function of switching frequency
($T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}, D=0.5, V_{\mathrm{CE}}=400 \mathrm{~V}$, $\left.V_{G E}=0 /+15 \mathrm{~V}, R_{\mathrm{G}}=118 \Omega\right)$

T_{C}, CASE TEMPERATURE
Figure 3. Power dissipation (IGBT) as a function of case temperature
($T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$)

$V_{\text {CE }}$, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
($D=0, T_{\mathrm{C}}=25^{\circ} \mathrm{C}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$)

T_{C}, CASE TEMPERATURE
Figure 4. Collector current as a function of case temperature
$\left(V_{G E} \leq 15 \mathrm{~V}, T_{j} \leq 150^{\circ} \mathrm{C}\right)$

SGB02N60

$V_{\text {CE }}$, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics ($T_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

$V_{\text {GE }}$, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics ($V_{C E}=10 \mathrm{~V}$)

$V_{\text {CE }}$, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
($T_{\mathrm{j}}=150^{\circ} \mathrm{C}$)

T_{j}, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature
$\left(V_{\mathrm{GE}}=15 \mathrm{~V}\right)$

Figure 9. Typical switching times as a function of collector current
(inductive load, $T_{\mathrm{j}}=150^{\circ} \mathrm{C}, V_{\mathrm{CE}}=400 \mathrm{~V}$, $V_{\mathrm{GE}}=0 /+15 \mathrm{~V}, R_{\mathrm{G}}=118 \Omega$,
Dynamic test circuit in Figure E)

Figure 11. Typical switching times as a function of junction temperature
(inductive load, $V_{C E}=400 \mathrm{~V}, V_{G E}=0 /+15 \mathrm{~V}$, $I_{\mathrm{C}}=2 \mathrm{~A}, R_{\mathrm{G}}=118 \Omega$,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES

Figure 10. Typical switching times as a function of gate resistor
(inductive load, $T_{\mathrm{j}}=150^{\circ} \mathrm{C}, V_{\mathrm{CE}}=400 \mathrm{~V}$, $V_{G E}=0 /+15 \mathrm{~V}, I_{C}=2 \mathrm{~A}$,
Dynamic test circuit in Figure E)

Figure 12. Gate-emitter threshold voltage as a function of junction temperature ($I_{C}=0.15 \mathrm{~mA}$)

Figure 13. Typical switching energy losses as a function of collector current
(inductive load, $T_{j}=150^{\circ} \mathrm{C}, V_{C E}=400 \mathrm{~V}$, $V_{\mathrm{GE}}=0 /+15 \mathrm{~V}, R_{\mathrm{G}}=118 \Omega$,
Dynamic test circuit in Figure E)

Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, $V_{C E}=400 \mathrm{~V}, V_{G E}=0 /+15 \mathrm{~V}$, $I_{C}=2 \mathrm{~A}, R_{\mathrm{G}}=118 \Omega$,
Dynamic test circuit in Figure E)

Figure 14. Typical switching energy losses as a function of gate resistor
(inductive load, $T_{j}=150^{\circ} \mathrm{C}, V_{\mathrm{CE}}=400 \mathrm{~V}$, $V_{\mathrm{GE}}=0 /+15 \mathrm{~V}, I_{\mathrm{C}}=2 \mathrm{~A}$,
Dynamic test circuit in Figure E)

Figure 16. IGBT transient thermal impedance as a function of pulse width ($D=t_{\mathrm{p}} / T$)

Figure 17. Typical gate charge
$\left(I_{C}=2 A\right)$

Figure 19. Short circuit withstand time as a function of gate-emitter voltage
($V_{\text {CE }}=600 \mathrm{~V}$, start at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

Figure 18. Typical capacitance as a function of collector-emitter voltage ($V_{G E}=0 \mathrm{~V}, f=1 \mathrm{MHz}$)

Figure 20. Typical short circuit collector current as a function of gate-emitter voltage
$\left(V_{\text {CE }} \leq 600 \mathrm{~V}, T_{\mathrm{j}}=150^{\circ} \mathrm{C}\right)$

SGB02N60

Figure A. Definition of switching times

Figure B. Definition of switching losses

Figure D. Thermal equivalent circuit

Figure E. Dynamic test circuit Leakage inductance $L_{\sigma}=180 \mathrm{nH}$ and Stray capacity $C_{\sigma}=180 \mathrm{pF}$.

SGB02N60

Edition 2006-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 11/30/06.
All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Transistors category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0\#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB

IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2
IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085

FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0\#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1

[^0]: ${ }^{2}$ J-STD-020 and JESD-022
 ${ }^{1)}$ Allowed number of short circuits: <1000; time between short circuits: $>1 \mathrm{~s}$.

[^1]: ${ }^{1)}$ Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for collector connection. PCB is vertical without blown air.
 ${ }^{2)}$ Allowed number of short circuits: <1000; time between short circuits: $>1 \mathrm{~s}$.

